DOI QR코드

DOI QR Code

Spectral and Photophysical Behaviors of Curcumin and Curcuminoids


Abstract

In order to obtain detailed information on ground and excited states of curcumin and curcuminoids, as well as to understand the photobiological characteristics of them, their spectral and photophysical behaviors are investigated in various conditions. Various curcuminoids were obtained and their structures were determined by spectroscopic methods. In n-hexane, the absorption and fluorescence spectra of these compounds contain some structure, which disappear in more polar solvent such as methanol. The fluorescence intensities of curcumin and dimethylated curcumin decrease as the concentration of water increases. The intensities also decrease as the solvent varies from neutral to extremely acidic (lower than pH 1.5) or to basic (higher than pH 8.0) condition. These results indicate that the spectral and photophysical properties of both of curcumin and curcuminoids are strongly influenced by solvent, water, and pH.

Keywords

References

  1. Microchem. J. v.38 Jasim, F.; Ali, F.
  2. Cancer Lett. v.29 Kuttan, R.; Bhanumathy, P.; Nirmala, K.; George, M. C.
  3. J. Ethnopharmacol. v.27 Soudamini, K. K.; Kuttan, R.
  4. Arch. Microbiol. v.151 Dahl, T. A.; McGowan, W. M.; Shand, M. A.; Srinivasan,V. S.
  5. Abstract of 81st Annual Meeting of Amer. Assoc. Cancer Research Pervaiz, S.; Skiles, H.; Rajasekharan, K. N.; Gulliya, K. S.
  6. Thesis Tfnnesen, H. H.
  7. Biochem. Pharmacol. v.25 Sharma, O. P.
  8. Eur. Pat. Appl.EP 287,750 (Cl. G03F7/08) Martin, R. L.; Rajaratnam, M. M.; Turci, P.
  9. Can. Pat. Appl. CA2,029,263 (Cl. A61K7/42) Nambudiry, M. E.; Natraj, C. V.
  10. Lebensm. Unters. Forsch. v.180 Tonnesen, H. H.; Karlsen, J. Z.
  11. Organic Preparations and Procedures International Brief v.26 Badu, K. V. D.; Rajasekharan, K. N.
  12. Microchem. J. v.39 Jasim, F.; Ali, F.
  13. Photochem. Photobiol. v.59 Chignell, C. F.; Bilski, P.; Reszka, K. J.; Motten, A. G.;Sik, R. H.; Dahl, T. A.
  14. The Chemistry of Enols Weedon, A. C.;Rapport, Z.(ed)
  15. Struct. Bond. v.57 Emsley, J.
  16. In Comprehensive Analytical Chemistry v.VIII. Guibault, G. G.;Svehla, G.(ed.)
  17. Practical Fluorescence: Theory, Methods, and Technigues Guibault, G. G.
  18. Microchem. J. v.46 Jasim, F.; Ali, F.
  19. Chem. Phys. Lett. v.9 Chandross, E. A.; Thomas, H. T.
  20. J. Chem.Phys. v.47 Beens, H.; Knibbe, H.; Weller, A.
  21. J. Photochem. Photobiol. A:Chem. v.71 Behera, P. K.; Mishra, A. K.
  22. Chem. Phys. Lett. v.140 Roy, R.; Mukherjee,
  23. Bull. Chem. Soc. Jpn. v.57 Moriya, T.
  24. Phys. Chem. v.92 Smoluchowski, M.
  25. Trans. Electrochem. Soc. v.82 Debye, P.
  26. J. Am. Chem. Soc. v.90 Wagner, P.J.; Kochevar, I.
  27. Lebensm. Unters. Forsch. v.180 Tonnesen, H.H.; Karlsen, J. Z.
  28. ACS Symposium Series v.506 Tonnesen, H. H.
  29. Sci. Pharm. v.40 Racz, I.; Spiegl, P.
  30. Bull. Korean Chem. Soc. v.7 Shim, S. C.; Bong, P. H.
  31. J. Photochem. Photobiol., A: Chem. v.40 Shim, S. C.; Lee, K. T.; Bong, P.H.
  32. J. Chem. Soc. Perkin Trans. v.2 Bong, P. H.;Shim, S. C.; Shizuka, H.
  33. CRC Handbook of Chemistry and Physics(67th Ed.) Weast, R. C.

Cited by

  1. A Laser Flash Photolysis Study of Curcumin in Dioxane-Water Mixtures vol.74, pp.6, 2001, https://doi.org/10.1562/0031-8655(2001)074<0745:alfpso>2.0.co;2
  2. Molecular basis of the Cotton effects induced by the binding of curcumin to human serum albumin vol.14, pp.16, 2000, https://doi.org/10.1016/s0957-4166(03)00486-5
  3. Fluorescence Enhancement of Curcumin upon Inclusion into Cucurbituril vol.16, pp.7, 2000, https://doi.org/10.1080/10610270412331283583
  4. A theoretical investigation on intramolecular hydrogen-atom transfer in curcumin vol.684, pp.1, 2000, https://doi.org/10.1016/j.theochem.2004.06.034
  5. DFT and experimental studies of the structure and vibrational spectra of curcumin vol.102, pp.6, 2000, https://doi.org/10.1002/qua.20469
  6. Studies on curcumin and curcuminoids. XXIX. Photoinduced cytotoxicity of curcumin in selected aqueous preparations vol.4, pp.7, 2000, https://doi.org/10.1039/b503397g
  7. Curcuminoid Ligands for Sensitization of Near-Infrared Lanthanide Emission vol.15, pp.4, 2000, https://doi.org/10.1007/s10895-005-2832-8
  8. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy vol.5, pp.3, 2000, https://doi.org/10.2217/nnm.10.9
  9. Curcumin Blocks Kv11.1 (erg) Potassium Current and Slows Proliferation in the Infant Acute Monocytic Leukemia Cell line THP-1 vol.28, pp.6, 2011, https://doi.org/10.1159/000335850
  10. Supramolecular assembled nanogel made of mannan vol.361, pp.1, 2000, https://doi.org/10.1016/j.jcis.2011.05.020
  11. Apoptosis-induced anticancer effect of transferrin-conjugated solid lipid nanoparticles of curcumin vol.3, pp.1, 2000, https://doi.org/10.1007/s12645-012-0031-2
  12. The influence of Pluronics® on dark cytotoxicity, photocytotoxicity, localization and uptake of curcumin in cancer cells: studies of curcumin and curcuminoids XLIX vol.12, pp.3, 2013, https://doi.org/10.1039/c2pp25249j
  13. The Binding of Curcuma longa Extract with Bovine Serum Albumin Monitored via Time‐Resolved Fluorescence vol.89, pp.5, 2013, https://doi.org/10.1111/php.12129
  14. Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column vol.6, pp.8, 2014, https://doi.org/10.1039/c3ay41987h
  15. Revoking excited state intra-molecular hydrogen transfer by size dependent tailor-made hierarchically ordered nanocapsules vol.4, pp.16, 2000, https://doi.org/10.1039/c3ra45095c
  16. Curcumin conjugated gold nanoparticle synthesis and its biocompatibility vol.4, pp.4, 2000, https://doi.org/10.1039/c3ra45345f
  17. Synthesis and crystal structure of a novel copper(ii) complex of curcumin-type and its application in in vitro and in vivo imaging vol.2, pp.23, 2000, https://doi.org/10.1039/c4tb00133h
  18. Facile Synthesis of Curcumin-Loaded Starch-Maleate Nanoparticles vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/824025
  19. Synthesis, characterization, and antitumor activity of binuclear curcumin-metal(II) hydroxo complexes vol.23, pp.4, 2000, https://doi.org/10.1007/s00044-013-0727-9
  20. Validation of Photodynamic Action via Photobleaching of a New Curcumin-Based Composite with Enhanced Water Solubility vol.24, pp.5, 2000, https://doi.org/10.1007/s10895-014-1422-z
  21. Nanoprecipitation and Spectroscopic Characterization of Curcumin-Encapsulated Polyester Nanoparticles vol.31, pp.42, 2000, https://doi.org/10.1021/acs.langmuir.5b02773
  22. Ostwald Ripening Stability of Curcumin-Loaded MCT Nanoemulsion: Influence of Various Emulsifiers vol.21, pp.3, 2000, https://doi.org/10.3746/pnf.2016.21.3.289
  23. Fabrication and vibration characterization of curcumin extracted from turmeric ( Curcuma longa ) rhizomes of the northern Vietnam vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-2812-2
  24. Fluorescent natural products as probes and tracers in biology vol.34, pp.2, 2000, https://doi.org/10.1039/c6np00111d
  25. Synthesis, surface profile, nonlinear reflective index and photophysical properties of curcumin compound vol.29, pp.13, 2000, https://doi.org/10.1007/s10854-018-9167-0
  26. Facilely prepared blue-green light sensitive curcuminoids with excellent bleaching properties as high performance photosensitizers in cationic and free radical photopolymerization vol.9, pp.14, 2018, https://doi.org/10.1039/c8py00166a
  27. Interplay between conformational and solvent effects in UV-visible absorption spectra: curcumin tautomers as a case study vol.21, pp.28, 2000, https://doi.org/10.1039/c9cp00907h
  28. Encapsulation and release of curcumin using an intact milk fat globule delivery system vol.10, pp.11, 2000, https://doi.org/10.1039/c9fo00489k
  29. A short review on chemical properties, stability and nano-technological advances for curcumin delivery vol.17, pp.1, 2020, https://doi.org/10.1080/17425247.2020.1702644
  30. Solubility and stability enhancement of curcumin in Soluplus® polymeric micelles: a spectroscopic study vol.41, pp.4, 2020, https://doi.org/10.1080/01932691.2019.1592687
  31. Non-Cytotoxic Dibenzyl and Difluoroborate Curcuminoid Fluorophores Allow Visualization of Nucleus or Cytoplasm in Bioimaging vol.25, pp.14, 2000, https://doi.org/10.3390/molecules25143205
  32. Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin vol.19, pp.8, 2000, https://doi.org/10.1039/d0pp00032a
  33. Curcumin-Loaded Electrospun Fibers: Fluorescence and Antibacterial Activity vol.2, pp.5, 2020, https://doi.org/10.1007/s42765-020-00048-6
  34. Structure and morphological studies of curcuminoids and curcuminoid mixture vol.547, pp.None, 2000, https://doi.org/10.1016/j.jcrysgro.2020.125812
  35. Influence of pH, β-Cyclodextrin, and Metal Ions on the Solubility and Stability of the Medicinally Competent Isoxazole Derivative of Curcumin: A Photophysical Study vol.4, pp.12, 2000, https://doi.org/10.1021/acsabm.1c00957