DOI QR코드

DOI QR Code

Gibbs Ensemble Monte Carlo Simulation for Vapor-Liquid Equilibrium of Binary Mixtures $CO_2/C_3H_8$, $CO_2/CH_3OCH_3$, and $CO_2/CH_3COCH_3$


초록

Gibbs ensemble Monte Carlo simulations were performed to calculate the vapor- liquid coexistence properties for the binary mixtures $CO_2/C_3H8$, $CO_2/CH_3OCH_3$, and $CO_2/CH_3COCH_3.$ For all the molecules the potential between sites in different molecules was simply calculated by the Lennard-Jones potential. Density of the mixture, composition of the mixture, the pressure-composition diagram, the chemical potential of component, and the radial distribution function were calculated at vapor- liquid equilibrium. The composition and the density of both vapor and liquid from simulation agreed considerably well with the experimental values over a wide range of pressures. The radial distribution functions in the liquid mixtures showed that $CO_2$ molecules tended to form cluster with each other and $C_3H8$ molecules also aggregated each other due to the weak interaction between $CO_3$ and $C_3H8$ molecule. However the interaction potentials between the same components were similar to those between the different components in the liquid mixtures $CO_2/CH_3OCH_3$ and $CO_2/CH_3COCH_3$.

키워드

참고문헌

  1. Mol. Simulation v.9 Panagiotopoulos, A. Z.
  2. Mol. Phys. v.63 Panagiotopoulos, A. Z.;Quirke, N.;Stapleton, M.;Tildesley, D. J.
  3. J. Phys. Chem. v.99 Freitas, F. F. M.;Fernandes, F. M. S. S.;Cabral, B. J. C.
  4. J. Chem. Phys. v.96 Smit, B.
  5. J. Phys. Chem. B v.102 Liu, A.; Beck, T. L.
  6. J. Phys. Chem. v.98 Smit, B.;Siepmann, J. I.
  7. J. Chem. Phys. v.102 Smit, B.;Karaborni, S.;Siepmann, J. I.
  8. Mol. Phys. v.90 Siepmann, J. I.;Martin, M. G.;Mundy, C. J.;Klein, M. L.
  9. Mol. Phys. v.87 van Leeuwen, M. E.
  10. J. Am. Chem. Soc. v.119 Martin, M. G.;Siepmann, J. I.
  11. J. Phys. Chem. B v.103 Cui, S. T.;Cochran, H. D.;Cummings, P. T.
  12. Fluid Phase Equilibria v.131 Agrawal, R.;Wallis, E. P.
  13. J. Chem. Eng. Data v.30 Chang, H.;Morrell, D. G.
  14. J. Phys. Chem. v.100 Goldman, S.; Gray, C. G.; Li, W.; Tomberli, B.; Joslin, C. G.
  15. Mol. Phys. v.44 Murthy, C. S.;Singer, K.
  16. Bull. Korean Chem. Soc. v.20 Moon, S. D.
  17. J. Chem. Phys. v.96 de Pablo, J. J.;Laso, M.;Sute, U. W.
  18. J. Am. Chem. Soc. v.103 Jorgensen, W. L.
  19. Handbook of Chemistry and Physics, 80th ed.
  20. J. Comp. Chem. v.14 Carlson, H. A.;Nguyen, T. B.;Orozco, M.;Jorgensen, W. L.
  21. J. Am. Chem. Soc. v.106 Jorgensen, W. L.;Madura, J. D.;Swenson, C. J.
  22. J. Chem. Eng. Data v.21 Hamam, S. E. M.;Lu, B. C. Y.
  23. J. Chem. Eng. Data v.26 Tsang, C. Y.;Streett, W. B.
  24. J. Chem. Eng. Data v.44 Day, C. Y.;Chang, C. J.;Chen, C. Y.
  25. Int. J. Thermophys. v.10 Panagiotopoulos, A. Z.

피인용 문헌

  1. Monte Carlo Simulation for Vapor-Liquid Equilibrium of Binary Mixtures CO2/CH3OHCO2/C2 H5OH, and CO2/CH3CH2CH vol.23, pp.6, 2000, https://doi.org/10.5012/bkcs.2002.23.6.811
  2. An advanced Gibbs-Duhem integration method: Theory and applications (19 pages) vol.124, pp.5, 2006, https://doi.org/10.1063/1.2137706
  3. Atomistic simulation of CO2 solubility in poly(ethylene oxide) oligomers vol.112, pp.11, 2000, https://doi.org/10.1080/00268976.2013.842660
  4. Vapour-liquid equilibrium of acetone-CO2 mixtures of different compositions at the vicinity of the critical point vol.34, pp.None, 2000, https://doi.org/10.1016/j.jcou.2019.07.001