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Abstract

In an industrial process, the proper objective is to find the optimal operating conditions with minimum process variability

around the target. Vining and Myers(1990) suggest to use the separate model for the mean response and the process varian

linear predictor 7, = log o} is unknown and should be estimated. Noting that the variance of rA is heterogeneous, another

appropriate D-optimality criterion D, based on the method of generalized least squares is proposed in this paper.

1. Introduction

In an industrial process, the proper
objective is to find the optimal operating
conditions that achieve some target value for
the expected value of the response with
minimum process variability. Taguchi(1986)
proposes the robust parameter design
methods that place a great detail of
emphasis on the proper choice of levels of
controllable factors in a process for
variability reduction around the target.
Nair(1992) and Myers et al(1992) provide
overviews of the Taguchi’s parameter design
methods and they point out several
shortcomings to the Taguchi procedure. To
overcome them, the various statistical
alternatives (Welch et al(1990), Vining and
Myers(1990), Box and Jones(1992), ect.)
have been proposed. Vining and Myers(1990)

suggest to use the separate model for the
mean response and the process variance.
After they fit models by the method of least
squares, they use the dual response
approach of optimizing a primary response
function while satisfying conditions on a
secondary response function. Noting that the
dual response approach is based on the
estimated regression coefficients of those two
models, how reliable optimum operating
conditions by the dual response approach
are depends heavily on the precision of those
estimates.

Vining and Schaub(1996) propose an
appropriate D-optimality criterion D, which
will allow experimenters to design experiments
efficiently so that the estimates of regression
coefficients are precise in a sense. Vining et
al(2000) propose an alternative D-optimality
criterion D, by noting that all n of the
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experimental runs are used to estimate the
mean response, but n, distinct settings that
are replicated are used to estimate the
process variance.

In practice, the linear predictor 7, =log o ?
for the variance model is unknown and is
estimated by T, = log s?, where s? is the
observed sample variance. Noting that the
variance of7, is heterogeneous, another
appropriate D-optimality criterion D, based
on the method of generalized least squares is
proposed in this paper.

For the quadratic polynomial model for the
mean response and the first order for the log
transformed variance over a k-dimensional
cube, Vining and Schaub (1996) and Vining
et al (2000) illustrate that fully replicated
Central Composite Designs (CCDs) are
highly efficient with respect to both D, and
D, criterion. Based on D, criterion, we
practically recommend CCDs with two
replicates at star points and four replicates
at factorial points since those differently
replicated CCDs are better than fully
replicated CCDs with four replication even
though the size of the experiment of the
former design is smaller than that of the
latter design.

2. Reviews on design criteria for
estimating mean model and
variance model

It is assumed that for each design point x;

in the k-dimensional controllable factors
space a response variable Y(x,) can be
observed. The variable Y(x,) has expected

value
EY(x) =B’ f(x)
and
VarY(x,)=0?,

where f(x;) is a Kx1 vector representing
the appropriate polynomial expansion of x;
and B is a Kx1 vector of unknown regression
coefficients. Uncorrelated observations are
taken at x,, ... , x, (not necessarily distinct).

Let z,, ..., z,_be the distinct settings of x,,
..., X, that are replicated. It is assumed that
the model for the variance is

7= vy gz,

where g(z,) is a Sx1 vector representing the
appropriate polynomial expansion of z,, 7 is
a Sx1 vector of unknown regression
coefficients, and 7, is a linear predictor
related to the process variance ¢ > by

ol=h(r).

Let y be the nx1 vector of observed
responses and let 7 be the n,x1 vector of the
linear predictors. Then, the model for the

mean response is

Ey=Xj,
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where X = [f(x), ..., f(x,)] and the model
for the variance is

T=2y,
where Z’ = [g(z)), ..., gz, )].

Consider the joint estimation of fand y . It
is shown in Vining and Schaub (1996) that
the expected information matrix, J, is

_ XWX 0
- 0 ZWeZ],

where W, and W,, are diagonal matrix
with nonzero elements 1/6 2 and (4,7 ¢ %) /2,
respectively. We take

7;= 10g0i21

so that diagonal elements of W,, are
constant and o is guaranteed to be
positive. The expected information matrix

per observation is
1
M=—J.
n

In the polynomial regression model, M
represents a moments matrix in some sense.
The D-optimal design criterion (Kiefer and
Wolfowitz(1959), Fedorov(1972)) is to find a
design in which the determinants of the
expected information matrix M is maximized
and provides an experimenter with the
smallest volume of confidence ellipsoid for
the unknown regression coefficients under
the normality assumption. The D-optimality

criterion is known, by the celebrated Kiefer-
Wolfowitz theorem (Kiefer and Wolfowitz
(1960)), to control the variance of predicted
values over the region of interests.

Note that M depends on unknown ¢% . In
the absence of any prior information on o?,
Vining and Schaub (1996) assume that the
variances are initially constant over the
region of interest and propose an
appropriate D-optimality based criterion D,
which is adjusted for the number of
unknown coefficients in the mean model and
the variance model as follows;

1 s
D\=—[|X’X| - |ZZ|) %,
n

They use D, for evaluating competing
designs such as fully replicated CCDs,
replicated factorial CCDs and Notz fully
replicated designs.

Vining, Schaub and Modigh (2000) note
that all n of the experimental runs are used
to estimate the mean response, but n,
distinct settings are used to estimate the
process variance. Thus, they propose an
alternative moment matrix, M *, defined by

1
—X'X 0

n 1
0 ZZ
n,

M*=

and the corresponding D-optimality criterion
D , as follows;

11 1
D,=[(—)*—)5|X’X]| | Z Z|1%5.
n Ny




The Asian Journal on Quality / Vol.1, No. 1

35

3. Proposed design criterion

In practice, the linear predictor 7, =logo %
is unknown and should be estimated. We
replace o % by the observed sample variance
s?to get an estimate f\i =log s% But,

1
Var(log s%) = (—)* - Var(s)
1l 2 : 2(n-1
_(a‘.-) RCETEN (n-1)
2
_(n,-—l) .

Here n, is the number of replicates at z,.

Since the number of replicates could be
varied at design points z,, the variance of T :
is not homogeneous. Therefore the generalized
least squares estimator (g.l.s.e.) 7/; should be
used for the estimation of the regression
coefficient y for the variance model. The
glse. )//\ is given by

=@ WED W T,

where W,, is the diagonal matrix with
elements (n; - 1) which is the weight at z,.

Noting that unreplicated design points
whose weights are equal to zeros do not give
any information on log o %, it can be said
that all n of experimental runs are used to
estimate the process variance. Thus, we
propose another appropriate D-optimality
criterion D, for estimating mean and
variance function as follows;

1 .
Dy= —I[X’X| - |ZWnZ[1%F.
n

In summary, the proposed criterion D, is an
alternative of D, in which the weights of
design points for the estimation of log o'} are
considered.

Remark 3.1. Suppose x, , ..., x,, are distinct
design points among n settings «x, , ..., x, of
the k-dimensional controllable factors space.

We introduce the frequency counts n, for 1
< i € m as the number of times x; occurs
among x, , ... , X,. Then the information
matrix for the mean response model and the
variance model are respectively,

1 , A n; ,
—X'X= z_'l—;f(xi) fe) and

1 * o (n;-1)
—ZWaZ =Z

1=1

n g(xi)g(x,') .

As the size of the experiment » gets large, 1/n
converges to zero. Thus the information
matrix for the variance model is approximated
by

1 * q n;
CZWLZ :Z‘ — gx) glx) .
n - n

Then, it is interesting to note that the
approximated information matrix for the
quadratic polynomial mean response model
and the first order variance model is the
same as the information matrix for the
response surface model where we have
quadratic polynomial in k quantitative
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variables, one qualitative variable u with
two levels and all the 1st order interaction
between u and k quantitative variables (Lim
et al(1988)). That is to say, those two models
are equivalent asymptotically.

4. Differently replicated CCD

We assume the quadratic polynomial model
for the mean response and the first order
model for the log transformed variance over
a k-dimensional cube. The CCD is the most
popular class of second-order designs used in
practice. Among the modified class of CCDs
which either replicate star points (axial
points) or factorial points, Vining and
Schaub (1996) and Vining et al (2000) show
that fully replicated CCDs are highly
efficient with respect to both D, and D,
criterion. We consider the extended
modification of class of CCDs which are
allowed to have different size of replication
at the center, star points and factorial points.

Let r¢, rs and re be the number of replicates
at the center, star points and factorial points,
respectively. Even though D, criterion takes
the size of experiment n into account, the
experimenter cannot afford the large n due
to the experimental cost. We search for

optimal number of replications for 0 < r¢, rg,
re < 10. Table 1 list them.

The optimal number of replicates at
factorial points r; = 10 probably cause
experimenters to be out of the experimental
budget. Checking into values of D, for 0 <
re, T's, 'e = 10, we practically recommend two
replicates at star points and four replicates
at factorial points based on the D,- efficiency.

Only one center point is needed for & = 2
and none for 3 < k < 6. D, - efficiencies of
practically recommended designs for 2 < k
< 6 are .919, .939, .946, .954 and .959,
respectively. On the other hand, those for the
fully replicated designs with rg = r; = 4 are
918, .925, 942, .909 and .949. Thus D, -
efficiencies of practically recommended
designs are uniformly larger than the fully
replicated CCDs even though the size of the
experiment of the former design is smaller
than that of the latter design.

5. Concluding remarks

We propose new appropriate D-optimality
criterion D, for estimating the mean
response and the log transformed variance
function in which the weights of design
points for the estimation of logo % are

Table 1 Optimal number of replications in CCD for 0 < rs, rg, rr < 10

number of controllable factors k
2 3 4 5 6
r.* 4 0 0 0 0
r,* 5 6 7 4 6
I* 10 10 10 10 10
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considered. When we assume the quadratic
polynomial model for the mean response and
the first order polynomial model for the log
transformed variance over a k-dimensional
cube, we remark that our separate model for
the mean and the variance are asymptotically
equivalent to the response surface model
where we have quadratic polynomial in k
quantitative variables, one qualitative
variable u with two levels and all the 1st
order interaction between u and k
quantitative variables in the sense that
information matrices for those two model are
same. Based on D, - efficiencies, we
practically recommend CCD with two
replicates at star points and four replicates
at factorial points.
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