Abstract
We present a fingerprint identification algorithm using the wavelet transform and correlation. The wavelet transform is used because of its simple operation to extract fingerprint minutiaes features for fingerprint classification. We perform the rowwise 1-D wavelet transform for a $256\times256$ fingerprint image to get a $1\times256$ column vector using the Haar wavelet and repeat 1-D wavelet transform for a 1$\times$256 column vector to get a $1\times4$ feature vector. Using PNN(Probabilistic Neural Network), we select the possible candidates from the stored feature vectors for fingerprint images. For those candidates, we compute the correlation between the input binary image and the target binary image to find the most similar fingerprint image. The proposed algorithm may be the key to a low cost fingerprint identification system that can be operated on a small computer because it does not need a large memory size and much computation.