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Abstract. This research considers a system which has an ultimate ter-
minal event such as death, critical failure, bankruptcy together with a
certain indicative events (temporary malfunction, special treatment, kind
of defaults) that frequently occurs before the terminal event comes to the
system. Some investigation of a model for the corresponding bivariate
data of the system have been done with an explanation of the situation
in terms of two continuous variables instead of continuous-discrete vari-
ables and some other properties. Also an analysis has been carried out
to evaluate the effect of intermediate observation of occurrence of indica-
tive event so that the result can be used for a possible suggestion of an
intermediate observing schedule.
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1. INTRODUCTION

Common problems that arise in longitudinal studies are two kinds of modeling.
The first one is to model the effects of some explanatory factors on the number of
occurrences of a given event that have occured in some time interval. For example,
one may wish to model the number of transfusions given to a bone marrow transplant
patient in the course of their recovery, the number of admissions to the hospital of
a patient with a serious illness, or the number of doses of a drug given to a patient
with a heart attack in the emergency room. Also we can find many examples in
computers, cars, electronic products and in business areas. The other is to model
the lifetime that can be observed only one time. A lot of researches have been done
in reliability and survival analysis area.

In this article, we consider the following situation consisting of the above two
cases. That is about the systems which have both a critical failure event(main event)
such as death, bankruptcy and an indicative event which occurs repeatedly prior to
the occurrence of the critical failure event. For example one may experience number
of temporary malfuctions prior to the system failure or number of doses of a drug
prior to a patient s death.

The occurrences of such indicative events provide some information about the
occurrence of the main event and the status information of the system gives an idea
about the number of indicative events to occur in the future.

The important characteristics to be considered in the model for such situation is
how to explain the dependence structure between a continuous variable representing
the time to the main event and a discrete variable for the number of the indicative
events prior to the occurrence of the main event. In this paper we use the joint model
of time to the main event and number of indicative event using a shared frailty model
to explain mutual dependency. This frailty model is introduced by Vaupel etc.(1979)
who considered it to explain individual heterogeneity in a univariate survival model.
There are many researchers to exploit frailty models in several fields such as reli-
ability, survival analysis, demography, etc(Lee and Klein(1988, 1989), Lindley and
Singpurwalla(1986), Lawless(1987), Nayak(1987), Bandyopadhyay and Basu(1990),
Gupta and Gupta(1990), and Whitmore and Lee(1991), Park and Klein(1997), Park
and Lee(1998)). Specially Lawless(1987) and Park and Klein(1997) have investigated
the very similar situation with ours. Lawless studied the exact occurring times of
indicative events(new tumors) during the prespecified time interval and Park and
Klein applied the model to the breast cancer patients data. Following these two
results we consider a more realistic situation that allows intermediate observations
of the occurrence of the indicative event while Klein and Park’s model used only the
counting data obtained at the end of the study, that is, when the system fails or is
censored.

Section 2 investigates the characteristics of the suggested model, so that a phys-
ical interpretation is attached to a key part of the model about which the two
previous studies didn’t make any explanation. Section 3 describes data structure
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and likelihood function of situation. To discuss the effect of increasing the number
of intermediate observations of occurrences of indicative events on the inference in
terms of the standard error. In Section 4, a conclusion is made.

2. THE MODEL

2.1 BASIC MODEL

In this section we present a model for the joint distribution of the time to the
main event, we will call it death, X, and the number of indicative events which
occur up to time ¢, N(¢f) . We let W denote a shared random effect which has
a common multiplicative effect on both the rate at which death is occurring and
the rate at which the indicative events are occurring. This random effect, which
is allowed to vary from individual to individual, is analogous to a frailty in the
usual multivariate survival modeling(See Klein(1992)) and is put into a model for
unobserved heterogeneity in modeling count data (See Lawless (1987)). It represents
common genetic, disease specific or environmental factors that were not measured
on the individual which are affecting both the number of indicative events and the
time to death. Here we assume that W has a Gamma distribution with a mean of
1 and a variance 6. That is,

wl/ﬂ—le—-w/ﬁ

fW) = T /gem

(2.1)

Given the value of W = w, we assume that the time to death of an individual
with a covariate Z4 follows a Weibull distribution with hazard rate

h(tlw) = wat® ! exp(¢pZy), t >0, a > 0. (2.2)

For the number of events we assume, given W = w (and a system covariate Z,),
that N(t) follows a Poisson process with a rate

n(tlw) = wptf exp(yZ;) , t20, 20 (2.3)

Given W = w, we assume that N(¢) and X are independent. To study properties
of this model we first need to note that N(¢) is only observable as long as t < X,
and that N(t) = N(X) when ¢t > X. Thus we have, given W = w, with some abuse
of notation,

P[X =t, N(s) = klw]
— wexp($Z4)ot®" expl—w exp($Z4)t°]

9 [w exp(yZ,) min(s, t)P)* exp|w exp(vZ.) min(s, t)#)
k!

(2.4)
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Also

P[X > t,N(s) = k|lw]
= /OOP[qu,N(s):kIw] du, t>s
t

= /t P[X =u,N(u) = kjw] du

+ P[X >s,N(s) = klw], t<s (2.5)

To find the unconditional distribution of X and N(:), we take the expectation
of (2.4) with respect to W. For 8 > 0, this yields,

P[X =1, N(s) = K]
-1
= Ewzc!Tzrof'lJTi)[cexp(qszd)ou%‘*—1][exp(chWmin(s’'f>‘31"

X [1 4 exp($Z4)0t* + exp(yZ.)0 min(s, £)P)~ (7' +k+1) (2.6)

When 0 is equal to zero, W is equal to 1 almost surely and then X and N(:)
are independent Weibull and Poisson random variables, respectively. From (2.5) we
have

P[X > t, N(s) = k]
_ T +k)
T kIT(6-Y)

X [1+ exp(¢Z4)0t* + exp(ch)Osﬂ]“(a—l“Lk)

[eXP(ch)esﬂ ¥

rO'+k+1) k. ok+1
+ I(s - t)—W_—l)‘— exp(¢Zq)(exp(v2Zc)) b
s
* / ukPHa=1(1 4 exp(¢Za)0u + exp(1Z:)0u?) "D du (2.7)
t

where I(a) is an indicator function with 1 when a > 0 and 0 when a < 0. For
this model one can show that the marginal distribution of X is a univariate Burr
distribution with survival function

S(t) = (1 + exp(¢Z4)0t*) % (2.8)

To find the marginal distribution of N(s) we need to compute P[X >, N(s) = k].
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From (2.8) we see that

P[N(s)=k] = /SP[X =u,N(u) = kldu + P[X > s,N(s) = k]
0
-1
= T explZa)(expr20)F ot

s .
X / ukBo=1(1 4 exp(¢Z4)0u® + exp(fch)Ouﬂ)—(a_l“'kH)du
0

D61 + k)
KT (6-1)
x (1 + exp($Z4)0s® + exp(yZ.)0sP)~ (0" k) (2.9)

+ (exp(7Zc)0s”)*

2.2 CHARACTERISTICS OF THE MODEL

In order to get some physical explanations of the model, we first define the
following notations.

(O~ + k
AB,F) = 12_(0:1:;%!_)
o(ts) = 1+ exp($Z4)0t

T 1 + exp(¢Zy)6t> + exp(yZ.)0sP

Q(tas) = l_p(tas)
c(t,s) = 1 + exp(¢pZq)0t* + exp(yZ.)0s”
S(t) = survival distribution of X

(1) An explanation of p(¢, s)

p(t,s) plays an important probability role in the conditional probability dis-
tribution of N(s) given X > t, as in the study of Lawless(1987) and Park and
Klein(1997).

[1] Joint survival distribution of two components
We consider the systems with two components, A and B, say whose life times
are @ and X respectively. If we assume that their conditional hazard rates, given

w, are

ho(tlw) = wexp(yZ:)BtP~!
hx(tho) = wexp(¢Zq)at>"

and that W has the same distribution as (2.1). Then joint survival distribution
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of A and B is as follows;
PX>tQ>s) = Ew(P(X >t,Q>s|W))
-/ " exp(~wexp($Za)t® — wexp(vZe)s”) f(w) du
= (1 + exp(¢Z4)0t* + exp(fch)GsB)'o%
So the conditional survival distribution of A given B becomes a function of p(t, s).

(1 + exp($24)0t*) ]’"1
1 + exp(¢Z,)0t> + exp(yZ,.)0sP)
= [p(t,8)] (2.10)
Also we compute P(Q > s|X =t) from these results.
1+ exp($Zq)0te o7+
P@> X =0 = [z eteZe)
= [p(t, )" (2.11)

P(Q>s|X >t) = [(

[2] The ratio of two hazard rates of A
From (2.10) and (2.11), p(t, s) is written as the following ratio
AP(Q>s,X>t
_P@Q>s|X=t) _ [JT_Z] P(X > 1)
T PQ>sX>t)  PQ>s,X>t) fx(b)

and division of the first term in right side of (2.12) by P(Q > s) gives another
expression.

p(t,s) (2.12)

hx (t]Q > s)
hx(t)

From this result we can give two kinds of explanation to p(t,s). We assume
that @ is occurring time of an indicative event and X is occurring time of the main
event to explain in the view of our study. Then (2.12) is the ratio of the probability
that an indicated event doesn’t occur at time s when a main event occurs at time
t to the probability that an indicated event doesn’t occur at time s when a main
event doesn’t occur at time s. Here it is trivial that the ratio of two conditional
probabilities, p(t, s), is less than 1 when we consider the fact that there is a positive
relation between @) and X because of sharing environment.

Equation (2.13) can be interpreted as a value representing how much the hazard
rate the main event is decreased by the information that the indicative event does
not occur up to time s. ’

p(t,s) = (2.13)

(2) Characteristics of conditional probability of indicative events
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[1] P(N(s) =k | X > t) is calculated from equations (2.7), (2.8), (2.9).

P(N(s) =k | X >t) = A6, k)[q(t, )]F[p(t, s)]’”" R(t, max(t, s)) (2.14)
where
o = [1@9)] [p(@s)]” [S(@)
Rbya) = [q(t,s)] [p(t,s)] [S(t)]
3 g(u,u)\* (p(u S(u)
o+ [ () (5 ) p‘““)sw -

For s < t the conditional distribution of N(s) given X > ¢ follows a negative
binomial distribution with parameters 1/6 and success probability p(t,s). So the
expected value and variance are as follows;

E(N(s)|X > 1) = 2B

[Bp(2, 5)]
V(N(s)|X > ¢) = ;(t s)]

[2] Another interpretation of P(N(s) = k|X > t)

Under the fact that the conditional distribution is a negative binomial distribu-
tion with success probability p(t,s) when s < ¢, p(t, s) equals to P(Q > s|X > t) if
W has a gamma distribution with a mean of 1 and a variance 1. So the conditional
probability can be written as

P(N(s) =kl X >t) = (1-P(Q > s|X > t)*(P(Q > s|X > 1)) (2.15)

The fact that number of event N(s) equals to k at time s when a main event
doesn’t occur at time ¢(s < t) can be interpreted as the fact that k systems have
been found to have the indicative event occurred prior to s before one which has
no the indicative event up to s is observed in an experiment of investigating the
occurring time of the indicative event among the systems which do not experience
the main event at time ¢.

[3] Another interpretation of N(u) = k when X = u

When s < ¢ and variance of frailty W is 1, P(N(s) = k|X = t) is as follows;

P(N(s)=k|X =t) = k(q(s,t))*(p(s, 1))
= kK(P(Q < s|X > t)* (P(Q > s|X > t))?
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The number of indicative events which occurred prior to u when the system
failed at time u is equivalent to the number of the systems confirmed as those with
the indicative event occurred prior to time u before the two systems are found to
have no indicative event at time u. Also we get

1P(N(s) = k| X =1t)
kP(N(s) = k| X > t)

p(t,s) = (2.16)
[4] Characteristic in situation of s > ¢

When system life time X is greater than ¢, P(N(s) = k|X > t) and expectation
E(N(s)|X > t) are as follow if variance of frailty W equal to 1;

P(N(s) = k|X > 1)
= P(N(s) = k|X > s)P(X > s|X > t)
N /t "P(N(u) = k|X = u) fxxoe(u) dt

E(N(s)|X >t) = %E‘:’—Z;P(X >slX >t)

s (I(ua u)
y /t L o) d (2.17)

Specially when a = 3, the second term of right side in the above equation is as
follows;

2 [ L0 frixselw) du

u

+ P(X>sX>tP(X>s) — P(X>1t)

)

So the expectation is expressed by the cumulative distribution function.
E(N(s)|X > )
exp(vZ.) )
= |exp(vZ.)s*+ ——==< | P(X >s)P(X >s|X >t
(eprz2)s® + Z2IZD) Pl > )P > X >

2__[P(X>t) - 2P(t< X < s|X >1)] (2.18)

"~ exp(¢Zy)



Sukhoon Lee Heechang Park Raehyun Park 73

3. DATA ANALYSIS

3.1 DATA AND LIKELIHOOD FUNCTION
Here is the notation for the data of the individual <.

(i) Total number of observations of indicative events : n; + 1

(i1) Occurring time of main event : X; , Censoring time : L;

(iii) Time to end of the study : T; = min(X; , L;)

(iv) Censoring indicator : d; (6; = 1 death ; §; = 0 censor)

(v) Time of observation of the indicative event : s;; ( =0,1,2,--- ,n; + 1)

(vi) Number of indicative events between s;;_; and s;; :kij ( =1,2,--- ,n; +1)

Here s;0 in (v) and (vi) is set to 0 and s; n+1 is set to T;. The likelihood function
is written as

m n;+1
Lp = Y [mTg) + Y ka log(sh — s5_,) + i Za,
i=1 =1

m
+ ki Ze, — g In(yi) — m1og(D(1/6)) — ™ log(6)
n;+1
+ d;log(a) + (a — 1)é; log(¢; Z log(k!) ] (3.1)

where m is the sample size and

1
gi=g + ki + 0

and

1
yi = 7 + t;%exp(¢Zy,) + t;? exp(rZc;)

The usual maximum likelihood estimation process for the parameters «, 3, 6, ¢,
v has been discussed by Klein and Moeschberger(1997), Park and Lee(1998).

Owing to the exploited methods for inference, we investigate the effect of the
increased number of observations of occurrence of the indicative event on the infer-
ences.
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3.2 EXPERIMENT

The basic set up for the parameters is as following :

Case
a | b | c|d]|e f |lg|h i
a 30({30(|30125(25{25(3.0{3013.0
J5} 151202515 (20(25]15]|20]25
0 20120(20120)20(20]|05]05]0.5
common : g = —4.6 ¢; = 0.69 79 = —0.69 v; = 0.78

We assume that the time to death(main event) follows a weibull distribution and
the censoring time has an exponential distribution with mean equal to the marginal
mean of the system lifetime. One covariate affecting the hazard rates is assumed to
be common with two values 0 and 1 indicating the two groups.

The times for the observations of occurrence of the indicative event are deter-
mined at the middle of the marginal mean of the system lifetime in case of two
observations and at 1/3 and 2/3 of the mean in case of three observations and so on
up to the case of ten observations. The following table shows the various standard
errors for each case. Here notation (a — o) means the estimated standard error of
the estimate of o under the setting case a.
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Figure 3.9
[1] Influence of shape parameter 3

Figure (3.1) to Figure (3.3) shows the decreasing rates of the standard error of
the estimates of parameters o, 3, § when @ =3 and 6§ = 2 and 8 = 1.5, 2.0, 2.5.
All three figures confirm that the standard errors are decreasing very fast when the
number of observations is increased from 1 to 2 in similar patterns. As is expected
the standard errors of 3 are decreasing much more than those of & and 6.

[2] Influence of shape parameter o

In Figure (3.4) to Figure (3.6), comparing the cases of (@ =3, 8 =2, 6 = 2)
and (a = 2.5, B = 2, 6 = 2) more decrease is found when a = 3, which suggests
to increase the number of observations when the hazard rate of the main event gets
large.

(3] Influence of environment parameter

In Figure (3.7) to Figure (3.9), showing the decreasing patterns for cases of
(=3, 8=2,0=2)and (a =3, B =2, 8§ =0.5), all three estimates &, B, 6
tend to have large effect when 6 = 2 so that the more the heterogeneity unexplained
by covariates the more intermediate observations are recommended.

4. CONCLUSION

Most of systems have various kinds of indicative events such as repairable failures,
temporary malfunctions, doses of drugs, transfusions followed by main events such
as unrepairable failure, death, bankruptcy which may or may not be dependent of
the indicative ones. In this research, we consider a mixed type bivariate distribution
with dependence induced by an environmental factor explained through a frailty
model. Data considered consists of discrete type one for the numbers of occurrence
of the indicative event observed before the main event: occurs and continuous type
one for the time to the main event. Our consideration can be regarded an extension
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of the studies done by Lawless(1987) and Park and Klein(1997) up to the multi-
observation of occurrences of the indicative event(Park and Klein) during the random
interval(Lawless). The two aspects discussed mainly in this paper are about physical
interpretation of the model and about the effect of the intermediate observations
of indicative events. This interpretations given to the probability involved in the
conditional distribution function of the number of indicative events is driven based on
the joint distribution of two continuous lifetime random variables whose dependence
is also induced by a frailty model so that one can get a deep insight about the
situation described in the model. The effect analysis suggests that more intermediate
observations are needed if the degree of heterogeneity unexplained by covariates
gets bigger and the hazard rate of the main event becomes larger confirming the
estimate of B has the largest benefit with a decreased standard error as is expected.
Further research of connecting the increased number of intermediate observations
and the increased cost for the observations is aiming at an optimal experimental
design. Another effort is being given to an application of the model to the real
world financial data and motor lifetime data which have lots of noises.
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