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Abstract. In a recent paper Iskandar & Sandoh (1999) studied an
opportunity-based age replacement policy for a system which has a war-
ranty period (0,S]. When the system fails at age z < S a minimal repair is
performed. If an opportunity occurs to the system at age z, S <z < T,
we take the opportunity with probability p to preventively replace the
system, while we conduct a corrective replacement when its fails in (S,T).
Finally, if its age reaches T, we perform a preventive replacement. Un-
der this policy the design variable is T'. For the case when opportunities
occur according to a homogeneous Poisson process, the long-run average
cost of this policy was formulated and studied analytically by Iskandar
& Sandoh (1999). The same problem is here analysed by using a graph-
ical technique based on scaled TTT-transforms. This technique gives,
among other things, excellent possibilities for different types of sensitiv-
ity analysis. We also extend the discussion to the situation when we have
to estimate T based on times to failure.
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1. INTRODUCTION

This paper discusses an opportunity-based age replacement policy for a system
which has a warranty period of (0,S]. Under the proposed policy, the system is
restored from failure by a minimal repair during its warranty period. A minimal
repair is a repair after which the failure rate of the system is the same as just
before failure. The concept of minimal repair was first introduced by Barlow &
Hunter (1960). Whenever the system fails after the warranty period (0,S] we perform
a corrective replacement, i.e. the system is replaced by a new identical unit or
equivalently, restored to ”as-good-as-new” state. When an opportunity occurs to
the system at age z, with S < z < T, we take the opportunity to preventively
replace the system with probability p. When the age of the system reaches 7' we
always conduct a preventive replacement.

Under such a policy the design variable is 7. In this paper we discuss the long-
run average cost per unit time of the proposed policy in the case when opportunities
occur according to a homogeneous Poisson process and the analysis is based on a
graphical approach with TTT-plots and scaled TTT-transforms as tools.

The idea associated with S and T in the above discussion is similar to that of ¢
and T respectively, in the (t,T)—policy proposed by Ohnishi et al. (1990). Under
their policy we conduct a minimal repair to the objective system if it fails when its
age z satisfies < t. In the case when t < 2 < T a corrective replacement (CR)
is performed to the system when it fails. When z becomes equal to T preventive
replacement (PR) of the system is performed. Ohnishi et al. (1990) provided and
discussed a general formulation to such a problem based on semi-Markov decision
processes. However, the (t,T)-policy does not take an opportunity-based replace-
ment into account.

Our model is of practical interest for instance when discussing behaviour related
to computers. In recent years, personal computers (PC) have become an essential
key component in an office as well as in manufacturing systems to preserve an update
significant information. The moment a PC fails we may lose significant information
stored on its hard disk. If we want to prevent such a serious loss, it is important to
conduct preventive maintenance such as backup operations of files on the hard disk
and to replace our PC preventively by a new one before it fails. On the other hand,
technology associated with PCs has shown a remarkable development in the past two
decades. New models of PCs have been released every half-year. Operating systems
and their related major application software have also been released frequently.
Harddisk memory sizes have become significantly larger with new versions of PCs.
These facts have sometimes obliged us to replace our PC with a new one even when
it has not failed. This indicates that these factors can be regarded as opportunities
in the opportunistic preventive maintenance policies.
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2. MODEL FORMULATION

Under the proposed replacement policy the process behaviour generates a renewal
reward process (see e.g. Ross, 1970) where the renewal corresponds to a PR or CR,
whichever occurs first. In this section we formulate the expression of the long-run
average cost per unit time based on the renewal reward theory.

Let c; and c2(< ¢1), respectively, denote the cost for CR and PR, respectively.
Furthermore, let ¢3 be the cost for a minimal repair. The reasons for the cost c3 are
for instance the following: (1) Even if a system is recovered from a failure free of
charge during the warranty period we may lose significant information on the hard
disk at a failure, (2) we will not be able to use our PC while it is repaired, and (3)
even if an alternative PC is supplied we will waste our time on setting it up.

It is assumed that the opportunities occur according to a homogeneous Pois-
son process with parameter A. As mentioned before, we take an opportunity with
probability p if we have passed the warranty period. When we look at the process
caused by the opportunity~based PRs, the cumulative distribution function (cdf) of
the time between successive PRs is given by

Go(t) = 1 —exp(=Apt), t>0. (2.1)

It should be noted that the cdf in (2.1) is that of an exponential distribution with
parameter \p; see Block et al. (1985).

Let us denote by y(S) the residual life, or excess life, at age S. Then the survival
function R,(t), and the failure rate r,(t) of 7(S) are expressed by

_R(t+85)
Ry(t) =TR(S)
r(t) =22 _ 1)

Ry(t)

where R(t), f(t) and r(t), respectively, is the survival function, the density function
and the failure rate of the system; see e.g. Ross (1970).

The long-run average cost per unit time C(T") under this policy is given by (see
Iskandar & Sandoh, 1999)

_ B(T)
0 =am)
where -
A(T) = S + /S R, (t — S) exp(=Ap(t — S))dt
and

T
B(T) =e1 — (1~ c2) | /S R, (t — S)Apexp(—Ap(t — S))dt

+ By(T — 8) exp(=Xp(T = 8))| + s E[N(S)]
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and N(S) represents the number of minimal repairs during the warranty period. It
should be noted here that E[N(S)] is difficult to derive in a closed form for a general
failure time distribution F(t).

Iskandar & Sandoh (1999) proved the following results (although the findings
were not formulated as a theorem in this way).
Theorem 1 (Iskandar & Sandoh, 1999). If F is IFR then there is a unique solution
T*, with § < T* < oo, which minimises the average long-run cost C(T"). The
solution 7™ depends on the costs involved and the different possibilities are described
as follows, where

a=57r(S)+1

b =r(o0) [S + —5(1—‘5—,5 /Soo exp(—Ap(t — S))R(t)dt

Ap [
+ m/s exp(—Ap(t — S))R(t)dt

co =c1 +c3F [N(S)]
(1) If ¢p/(c1 — ¢2) < a, then we have T* = S. The long-run average cost in this case
is given by
EN
C(T*) — c2+c3 S[ (S)]

(2) If a < cp/(c1 — c2J < b there exists a unique and finite optimal solution T™ with
S < T*. The long—run average cost is in this case given by

C(T*) = (&1 — c2)r(T7)

(3) If co/(c1 — ¢2) > b, then we have T* = oo, i.e. no preventive replacement should
be performed. .

Remark. In Iskandar & Sandoh (1999) it was said that if F' is IFR then a unique
finite optimal solution T™* exists. That is not quite true, as can be seen from Theorem
1. Depending on the costs c;, ¢2 and c3 it is quite possible for T* to be infinite if e.g.
r(00) is finite, which may occur; see (3) above. However, if F' is IFR with r(oo) = oo
then a finite unique solution T* always exists, with S < T™*.

In Section 4 we will return to the problem to find the value T* which minimises
the long—run average cost C(T'). The solution is partly graphical and based on the
scaled TTT-transform which will be presented and discussed in the next Section.

3. THE TTT-PLOT AND THE SCALED TTT-TRANSFORM

Suppose that we have a complete ordered sample 0 = t(g) < t(1) < -+ < iy
of times to failure from n identical and independent non-repairable units with life
distribution F and survival function R = 1 — F. The TTT-plot (TTT = Total Time
on Test) of these observations is then obtained in the following way:
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e Calculate the TTT-values
Sj =ntay+(n—1(te) —tw)+..+(n—j+1)({tn) —tmn-1)) forj =1,2,--- ,n
( for convenience we set Sop =0 ).

e Normalize these TTT-values by calculating u; = S;/S, for j =1,2,--- ,n.
e Plot (j/n,u;) for j =0,1,--+ ,n.
¢ Join the plotted points by line segments.

Accordingly, the TTT-plot consists of line segments starting in the lower left corner
and ending in the upper right corner of the unit square. We also want to emphasise
that the TTT-plot is by definition independent of scale. When the sample size n
increases to infinity the TTT—plot converges to the scaled TTT-transform of the life
distribution F(t) from which the sample has come, see e.g. Langberg et al. (1980).
This is illustrated in Figure 1.

1

Figure 1. TTT-plots based on simulated data from a Weibull distribution with
B =2.0,n=10: (1) and 8 = 2.0, n = 100¢ (2) and the scaled TTT-transform of a
Weibull distribution with shape parameter § = 2.0z (3). (From Bergman & Klefsjo,
1984.)

The scaled TTT-transform of a life distribution F(t) is defined as

1 F(u)
p(u) = ;/ R(t)dt for 0<u<1
o

where R(t) = 1 — F(t) is the survival function and p is the finite mean.
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The scaled TTT-transform is, as the name indicates, independent of scale and
transforms every life distribution ( i.e., a distribution function with F(0) =0 ) to a
curve within the unit square. For instance, for a Weibull distribution with survival
function R(t) = exp(—(t/a)?), t > 0, the transform depends only on 8 and is
independent of the value of . Furthermore, every exponential distribution F(t) =
1—exp(—At), t > 0, is transformed to the diagonal in the unit square, independently
of the value of A; see Figure 2. Different deviations from the diagonal in the unit
square accordingly means different deviations from the exponential distribution. For
instance it is well-known that F'(t) has increasing failure rate (IFR) if and only if the
scaled TTT-transform is concave; see Barlow & Campo (1975). This is illustrated
by, for instance, curve number (2) in Figure 2.

wie)

[Total Time]

- S It
1
Figure 2. Scaled TTT-transforms from five different life distributions: (1) normal
with p =1, 0 = 0.3; (2) gamma with shape parameter 2.0; (3) exponential distribu-
tion; (4) lognormal with p = 0, o0 = 1; (5) Pareto distribution with survival function
R(t) = (1+t)72, ¢+ > 0. (From Bergman & Klefsjo, 1988a.)

The scaled TTT-transform and the empirical counterpart, the TTT-plot, were
introduced by Barlow & Campo (1975). These tools were first used for model iden-
tification purposes. Since then several other applications have appeared, both the-
oretical and practical. Among these are the analysis of different aging properties
(see e.g. Klefsjo, 1982) and for optimization when studying different replacement
problems of non-repairable units (see e.g. Bergman & Klefsjo, 1982, 1983, 1988b).
Recently also applications for repairable units have been presented (see e.g. Klefsjo
& Kumar, 1992). The TTT-plot and the TTT-transform have also proven to be use-
ful tools in more theoretical discussions, e.g. when studying different test statistics;



Bermawi P. Iskandar  Bengt Klefsjo  Hiroaki Sandoh 33

see e.g. Bergman & Klefsjo (1989), Klefsjo (1983, 1989), Klefsjo & Westberg (1996).
It should also be noticed that the TTT-transform is closely related to the Lorenz
transform, which is widely used in economics (see e.g. Chandra & Singpurwalla,
1981, Klefsjo, 1984).

4. ANALYSIS BY USING TTT-TRANSFORMS

If we study the expression in Section 2 for the average long~run cost C(T') it is
easily seen that we can rewrite

Co

T
B(T) =(Cl —62) ( —Ap/s [I—H»y(t—S)dt]) - 1+H’7(T—S)

C1—C2

where
co =c1 +c3E[N(9)]

and
1 — H,(t) = exp(—Apt)R,(t)

i.e. 1—H,(t) is the survival function of a series system consisting of two independent
components, one of which has an exponential time to failure with parameter Ap, and
the other has the survival function R,(t), t > 0. We note here that the failure rate
T (t) of Hy(t) is equal to Ap+r4(t), since the failure rate of a series system is equal
to the sum of the failure rates ( see e.g. Barlow & Proschan, 1981). This means for
instance, that H,(t) is IFR if F(t) is IFR, a fact we soon will use.

In the same way we can write

T
A(T) =S + /S [1— H,(t - S)]dt

From this we get that

C(T) =const + const c;-{» (T = 5)
S+ [ [1-Hy(t—S)]dt
¢+ ny(T )

=const + const
S+ @(H,(T - 5))

where
Cp

cs = —ApS—-1

CL—C2
and @(t) is the scaled TTT-transform of H,(t), i.e the life distribution of the series

system. Since the second constant in the expression (4.1) above is positive we get
that C(T') is minimal at the same value of T as

_ cs + H (T — S)
D) = ol T =5))

(4.2)
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where ¢g = S/p. Since

o = c1 +03E[N(S)]
5= Cl —C

+ApS—-1>0

we can analyse D(T) by using a technique based on the scaled TTT-transform
similar to the one described in Bergman & Klefsjo (1983).
The technique consists of two phases.

e Firstly, we substitute v = H,(T — §) in (4.2) and look for the value u* of u,
0 < u <1, for which

cs +u

o TR 4.3
o+ o) “3)
is minimised.

e Secondly, we get 7™, the optimal value of T, by solving the equation u* =
H,(T*-8).
The first problem here is easily illustrated and solved by using the scaled TTT-

transform of H,(t). This procedure is illustrated in Figure 3.

'y

\j

A

Figure 3. To minimise the expression in (4.3) we draw the line through A =
(—cs,—cg) which touches the scaled TTT-transform of H,(t) and has the largest
slope. If the life distribution F(t) has increasing failure rate (IFR) and accordingly
also H,(t) is IFR, i.e. the scaled TTT-transform is concave, that line touches the
transform at P = (u, p(u)), 0 < u < 1. If P coincides with (0, 0) we get that u* = 0,
which gives T* = S. If, instead P coincides with (1,1), then u* =1, and T* = oo.
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From Figure 3 we realise that a unique value »* which minimises the expression
in (4.3) exists if the scaled TTT-transform is concave. This is the case if H, has
increasing failure rate (IFR) which in turn happens if F' has IFR. If the line through
A with the largest slope touches the scaled TTT-transform in a value of u, with
0 < u < 1, the unique and finite value T* is the solution of u* = H,(T* ~ §). If
the line through A with the largest slope touches the transform in (0,0) the optimal
value T, which is the solution then to 0 = H,(T™ — S) gives T* = S. If, on the
other hand, the line with the largest slope touches the transform at (1,1) we get the
optimal T-value T* from the equation 1 = H,,(T™ — S), i.e. T* = 0.

The slope lyay of the tangency to the scaled TTT-transform at P = (u, ¢(u)) is

equal to
1

lan = ———F—

e H’”H(H“/(U))
where H>'(u) = inf(z : Hy(z) > u); see Barlow & Campo (1975). Accordingly, we
get that T* = S if the slope l4¢ of the line L 4o through A and (0,0) satisfies

lag 2 1o (4.4)

where g is the slope of the tangency L at (0,0). The condition in (4.4) is equal to
cs/cs > ly. In the same way T = oo if

lAl < loo (4-5)

where [ is the slope of the tangency Ly, at (1,1) and l4; is the slope of the line
L 4, through A and (1,1). The inequality in (4.5) is equivalent to

1+c¢5
<
1+c¢e ™ loo
Since
7 prg(oo) T pPp+ry(00)]  u[Ap +1r(00)]
and
° 7 ura(0)  pDp+1,(0)] ~ wDp+r(S)]

we now, by straight-forward calculations, get the results by Iskandar & Sandch
(1999) presented in Theorem 1 above.

It is easily seen here that it is quite possible that 7* = S or T* = oo depending
on the shape of the TTT-transform and on where the point A is situated. Differ-
ent sensitivity analyses regarding the costs are also easily performed by using this
graphical technique by moving the point A.

5. Estimation of 7* when F is unknown
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In most cases in practice, we do not know the life distribution. If we do not know
F(t) how can we then proceed to estimate T, with T)¥ say 7 One way is to estimate
T* by using an ordered sample of n times to failure, 0 = gy < (1) <Eg) < Sty
from our system with the life distribution F'(¢). It is then natural to get an estimator
of u* by studying the empirical counterpart to the expression in (4.3) and let T): be
the value of ¢(;) which corresponds to u*, including T; = 0 if u* = 0 and T = oo if
u*=1.

This can be solved in a similar way as discussed in Section 4 by using a generalised
TTT-plot which is obtained by first plot (Hy,(t;),A;) for j = 0,1,--- ,n, where
1 — Hy(t) = exp(=Apt)[l — j/n] for t(;; <t <t(j;1)and j=0,1,--- ,n—1

is an estimator of H.,(t) based on the Kaplan—Meier estimator of F'(t), see Kaplan
& Meier (1958), and

Y1~ Hy ()]t
10— H(1)at

and then connect the plotted points by line segments. For more information about
generalised TTT-plots, see e.g. Bergman & Klefsj6(1983), (1988).

Then we draw the line from A = (—cg, —c5) which touches the generalised TTT-
plot and has the largest slope (cf. Figure 4). If this line touches the generalised
TTT-plot at (Hyp(tk), Ax), where k isone of 1,2,--- ,n—1 then T = ¢(). fk=n
then T,y = oo and if k = 0 we get T,; = S. This process is illustrated in more detail
in Bergman & Klefsj6 (1983) in connection with the age replacement problem with
discounted costs which leads to a similar function to study.

1.0

. . 1‘.0
/ Fhf™) Hnlty)

Figure 4. Illustration of the graphical procedure to determine T}, based on the
generalised TTT-plot. The sample is simulated from R(t) = (1 + t)exp(—t), t > 0.
(From Bergman & Klefsjo, 1983.)
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