The Effect of Fluid Shear Stress on Endothelial Cell Adhesiveness to Modified Polyurethane Surfaces

  • Gilson Khang (Department Polymer Science and Technology, Chonbuk National University) ;
  • Lee, Sang-Jin (Department of Industrial Chemistry, Hanyang University) ;
  • Lee, Young-Moo (Department of Industrial Chemistry, Hanyang University) ;
  • Lee, Jin-Ho (Department of Polymer Science and Engineering, Hannam University) ;
  • Lee, Hai-Bang q (Biomaterials Laboratory, Korea Research Institutes of Chemical Technology)
  • Published : 2000.08.01

Abstract

Generally vascular grafts with a relatively large inner diameter (> 5 mm) have been successfully employed for replacement in the human body. However, the use of small diameter grafts is limited, because these grafts rapidly occlude due to the thrombosis. The ideal blood-contacting surface of a prosthesis would be an endothelial cell (EC) lining, because the confluent monolayer of healthy ECs that culture natural blood vessels represents the ideal nonthrombogenic surface. For vascular graft application, the stable EC adhesion on surface under How conditions is very important. In this study, the adhesive strength of ECs attached on polymer surfaces coated with collagen type IV (Col IV), fibronectin (Fn), laminin (Ln), and treated with corona was investigated onto polyurethane (PU) films. The EC-attached PU surfaces were mounted on parallel-plate flow chambers in a How system prepared for cell adhesiveness test. Three different shear stresses (100, 150, and 200 dyne/㎠) were applied to the How chambers and each shear stress was maintained for 120 min to investigate the effect of shear stress and surface treatment condition on the EC adhesion strength. It was observed that the EC adhesion strength on the surface-modified PU films was in the order of Ln≡Fn > Col IV > corona 》 control. More than 70% of the adhered cells were remained on surface-modified PU surface after applying the shear stress,200 dyne/㎠ for 2 hrs, whereas the cells were completely detached on the control PU surface within 10 min after applying the same shear stress. It seems that the type of adsorbed proteins and hydrophilicitv onto the PU surfaces play very important roles for cell adhesion strength.

Keywords

References

  1. J. Biomed. Mater. Res. v.30 K. Kotte-Marchant;A. A. Veenstra;R. E. Marchant
  2. Curr. Opinon Cardiol. v.6 P. Zilla
  3. J. Biomed. Mater. Res. v.26 H. P. Isher;C.W. Tattersall
  4. Biocompatibility of Solid Substrates Based on Surface Wettability, in Encyclopedic Handbook of Biomaterials and Bioengineering: Part A. Materials v.1 H. B. Lee;J. H. Lee;D.L. Wise(ed.);D.J. Trantolo(ed.);D. E. Altobelli(ed.);M.J. Yaszemski(ed.);J. D. Gresser(ed.);E. R. Schwartz(ed.)
  5. J. Biomed. Mater. Res. v.30 J. S. Burmeister;J. D. Vrany;W. M. Reichert;G. A. Truskey
  6. J. Biomater. Sci., Polym. Edn. v.8 A. Kikuchi;H. Taira;T. Tsuruta;M. Hayashi;K. Kataoka
  7. Biomaterials v.16 J. G. Steele;B. A. Balton;G. Johanson;P. A. Underwood
  8. J. Colloid Interface Sci. v.153 D.A. Dimilla;S. M. Albelda;J. A. Quinn
  9. J. Vasc. Surg. v.15 J.M. Li;M. J. Menconi;H. B. Wheeler;M.J. Rohrer;V.A. Klassen;J. E. Ansell;M.C. Apple
  10. J. Vasc. Surg. v.15 A. Schneider;R. N. Melmed.;H. Schwalb;M. Karck;I. Vlodavsky;G. Uretzky
  11. Biomaterials v.12 J. G. Steele;G. Johnson;W.D. Norris;P.A. Underwood
  12. Surgery v.109 G. J. L. Thomson;R. K. Vohra;M.H. Carr;M. G. Walker
  13. J. Cell. Sci. v.93 P.A. Underwood;F.A. Bennett
  14. J. Vase. Surg. v.9 J. Kaehler;P. Zilla;R. Fasol;M. Deusch;M. Kadletz
  15. J. Biomed. Mater. Res. v.21 P. B. van Wechem;B.W.L. Mallens;A. Dekker;T. Beugeling;J. Feijen;A. Bantjes;A. Bantjes;J.P. detmers;W. G. van Aken
  16. J. Vasc. Surg. v.3 K.A. Kesler;M. B. Herring;M.P. Arnold;J. L. Glover;H.M. Park;M.N. Helmus;P.J. Bendick
  17. J. Biomed. Mater. Res. v.19 K. L. Bentely;R. J. Klebe
  18. J. Surg. Res. v.38 J. M. Seeger;N. Kingman
  19. J. Cell. Physiol. v.113 R. Haas;L. Culp.
  20. J. Biol. Chem. v.257 F. Grinnel;M. K. Feld
  21. J. Biomed. Mater. Res. v.15 F. Grinnel;M. K. Feld
  22. J. Cell. Physiol. v.109 R. J. Klebe;K. L. Bentley;R. Schoen
  23. Int. J. Artif. Organs v.15 P. Desgranges;M. Tardieu;D. Loisance;D. Barritault
  24. J. Biomed. Mater. Res. v.23 K. J. Praat;S.K. Williams;S. E. Jarrel
  25. Biomater. Res. v.2 J. H. Lee;D.K. Kim;G. Khang;J.S. Lee
  26. Biomaterials v.13 T. G. van Gooten;J. M. Schakenraad, H.C. vander Mei;H.J. Busscher
  27. J. Biomed. Mater. Res. v.22 T.A. Horbett;J.J. Waldburger;B.D.Ratner;A.S. Hoffman
  28. J. Colloid. Interface. Sci. v.188 T.G. Ruardy;H.E. Moorlag;J.M. Schakenraad;H.C. van der Mei;H.J. Busscher
  29. Biomaterials v.6 P.B. van Wachem;T.G. Beugeling;J. Feijen;A. Bantejes;J.P. Detmers;W.G. van Aken
  30. Transport Phenomena R. B. Bird;W.E. Stewart;E.N. Lightfoot
  31. Circ. Res. v.53 C.K. Zarines;D.P. Giddens;B.K. Bharadvaj;V.S. Sottiurai;R.F. Mabon;S. Glagov.
  32. J. Colloid Interface Sci. v.205 J.H. Lee;G. Khang;J.W. Lee;H.B. Lee