The Application of a Laser to the Chemical Characterization of Radionuclides

  • Park, Y.J. (Korea Atomic Energy Research Institute) ;
  • Park, K.K. (Korea Atomic Energy Research Institute) ;
  • M/Y. Suh (Korea Atomic Energy Research Institute) ;
  • S.K. Yoon (Korea Atomic Energy Research Institute) ;
  • Park, Y.S. (Korea Atomic Energy Research Institute) ;
  • Kim, D.Y. (Korea Atomic Energy Research Institute) ;
  • Kim, W.H. (Korea Atomic Energy Research Institute)
  • Published : 2000.10.01

Abstract

Laser induced photoacoustic, fluorescence, and photon correlation spectroscopies were applied to the chemical characterization of radionuclides in connection with the radiowaste treatment and disposal. Their measuring principles and systems were briefly described together with their advantages over conventional spectroscopies. Also, other applications of lasers are introduced. Laser induced photoacoustic spectra were measured for a P $r^{3+}$ solution with a very low molar absorptivity. The detection sensitivity was 4.3 $\times$10$^{-5}$ c $m^{1}$ and was 100 times better than that of a UV/VIS spectrophotometer. The Eu(III) excitation spectra($^{7}$ $F_{0}$ longrightarrow $^{5}$ $D_{0}$ transition) were measured for Eu(III)-phthalate complexes using laser fluorescence spectroscopy, showing that only two species, 1:1 and 1:2 complexes, are present in the Eu(III)-phthalic acid system. The size and size distribution for colloidal humic acids and Eu(III)-humate colloids was determined using photon correlation spectroscopy. The presence of Eu(III) enhanced the aggregation of humic acids.s.

Keywords

References

  1. W. Schrepp, R. Stumpe, J. I. Kim, H. Walther, Appl. Phys., B32, 207 (1983) https://doi.org/10.1007/BF00688289
  2. R. Stumpe, J. I. Kim, W. Schrepp, and H. Walther, Appl. Phys., B34, 203 (1984) https://doi.org/10.1007/BF00697636
  3. S. Okajima, D. T. Reed, J. V. Beitz, C. A. Sabau, and D. L. Bowers, Radiochim. Acta., 52;53, 111 (1991)
  4. R. Klenze, J. I. Kim, and H. Wimmer, Radiochim. Acta., 52;53, 97 (1991)
  5. S. Magirius, W.T. Carnell, and J. I. Kim, Radiochim. Acta., 38, 29 (1985)
  6. M. Eiswirth, J. I. Kim, and Ch. Lierse, Radiochim. Acta., 38, 197 (1985)
  7. J. I. Kim, W. Treiber, Ch, Lierse, and P. Offermann, Mat. Soc. Symp. Proc. 44, 359, (1985)
  8. A. Rosencwaig, and S. S. Hall, Anal. Chem., 47, 548 (1975) https://doi.org/10.1021/ac60353a056
  9. M. J. Low, and G. A. Parodi, Spectrosc. Lett., 11, 581 (1978) https://doi.org/10.1080/00387017808063430
  10. A. J. Maeland, R. Rittenhaus, W. Lahar, and P. V. Romano, Thin Solid Films, 21, 67 (1974) https://doi.org/10.1016/0040-6090(74)90091-1
  11. S. W. Jeffrey, M. Sielicki, and F.T. Haxo, J. Phycol., 11, 374 (1975) https://doi.org/10.1111/j.1529-8817.1975.tb02799.x
  12. K. Sauer and R. Park, Biochim. Biophys. Acta., 79, 476 (1964)
  13. S. D. Campbell, S. S. Yee, and M. A. Afromowitz, J. Bioeng, 1, 185 (1977)
  14. R. van Heyningen. Sci. Am., 233, 70 (1975)
  15. A. Rosencwaig and E. Pines, Biochem. Biophys. Acta, 403, 10 (1977)
  16. Y. S. Toloukian, R. W. Powell, C. Y. Ho, and M. C. Nicolasu, Thermal Diffusivity, 1973, IFI/Pleum, New York
  17. M. J. Adams, and G. F. Kirkbright, Analyst, 102, 678 (1977)
  18. C. Moulin, P. Decambox, L. Couston, and D. Pouyat, J. Nucl. Soc. Technol., 31, 691 (1994)
  19. N. Delorme, Radiochim. Acta., 52;53, 105 (1991)
  20. van de Hulst, Light Scattering by Small Particles, Dover Publication Inc., New York (1981)
  21. W. Carnell, Handbook on the Physics and Chemistry of rare earths, edited by K. A. Gschneider, jr. and L. Eyring, Chapter 24 (1979)
  22. T. Sawada, S. Oda, and H. Kamada, Proc. Jpn. Acad. Ser. B, 54, 189 (1978)
  23. B. H. Lee, K. H. Chung, H. S. Shin, Y. J. Park, H. Moon, J. Colloid Interface Sci., 188, 439 (1997) https://doi.org/10.1006/jcis.1996.4756
  24. Y. J. Park, B. H. Lee, W. H. Kim, and Y. K. Do, J. Colloid Interface Sci., 209, 268 (1999) https://doi.org/10.1006/jcis.1998.5888