The Study on Absorption of $Cd^{2+}$ and $Pb^{2+}$ by Persicaria thunbergii and Rumex crispus, and Their Phytochelatin

고마리와 소리쟁이에 의한 $Cd^{2+}$$Pb^{2+}$의 흡수 및 phytochelatin에 관한 연구

  • 강경홍 (전주대학교 생명과학부) ;
  • 김인성 (전주대학교 대학원 생물학과) ;
  • 구정숙 (경북대학교 대학원 생물학과)
  • Published : 2000.06.01

Abstract

When Persicaria thunbergii and Rumex crispus were treated with Cd($NO_3$)$_2$ and Pb($NO_3$)$_2$ of 5 or 10 mM for 5 days, the amount of bioaccumulation of $Pb^{2+}$ in the leaf of P. thunbergii was 2.87-8.08$\mu\textrm{g}$/g and that of $Cd^{2+}$ was 0.82-2.79$\mu\textrm{g}$/g. In the case of P. thunbergii, the concentration of $Pb^{2+}$ in the leaf was higher than that of $Cd^{2+}$. On the other hand, in R. crispus, the concentration of $Cd^{2+}$ and $Pb^{2+}$ were similar as follows ; 1.49$\mu\textrm{g}$/g in $Cd^{2+}$ 5mM, 2.90$\mu\textrm{g}$/g in Cd2+ 10mM, 1.83$\mu\textrm{g}$/g in $Pb^{2+}$ 5mM and 2.73$\mu\textrm{g}$/g in $Pb^{2+}$ 10mM. The remaining rate of heavy metals and the variation of pH in the cultured soil decreased as compared with control (100 % and pH 6.48) after 5 days as follows; to 77.l% and pH 6.39 in $Cd^{2+}$ 5mM, 90.2% and pH 5.79 in $Cd^{2+}$ 10 mM, 81.1% and pH 6.00 in $Pb^{2+}$ 5mM, and 85.7% and pH 5.80 in $Pb^{2+}$ 10 mM. The result of size exclusion chromatography, several phytochelatins were seperated from the extract of the leaf of both plants treated with heavy metals. The molecular mass of these phytochelatins were estimated as follows; in the case of P. thunbergii, about 4,300-8,600 da by $Cd^{2+}$ and about 3,200-9,700 da by $Pb^{2+}$, and in R. crispus, about 4,300 da by $Cd^{2+}$ and about 3,200-7,500 da by $Pb^{2+}$. In addition, $A_{254}$ of these phytochelatins were higher than $A_{280}$. [Phytochelatin, Persicaria thunbergii, Rumex crispus]

고마리와 소리쟁이에 Cd$^{2+}$와 Pb$^{2+}$를 각각 5 및 10mM로 5일간 처리한 결과, 고마리에서는 중금속 5mM처리구의 경우 Pb$^{2+}$가 Cd$^{2+}$보다 약 3.5배, 10mM의 경우 약 2.9배로 Pb$^{2+}$의 농축량이 높게 검출된 반면, 소리쟁이는 Cd$^{2+}$ 5mM에서 약 1.49$\mu\textrm{g}$/g, 10mM에서 약 2.90$\mu\textrm{g}$/g그리고 Pb$^{2+}$ 5mM에서 약 1.83$\mu\textrm{g}$/g, 10mM에서 약 2.73$\mu\textrm{g}$/g로 검출되어 처리농도별 Cd$^{2+}$와 Pb$^{2+}$의 농축량은 비슷하였다. 고마리와 소리쟁의 배양액(pH 6.5)에 Cd$^{2+}$와 Pb$^{2+}$를 5및 10mM로 혼합하여 처리한 후 각 실험구 토양의 중금속 잔류율과 pH는 대조구에 비해 고마리를 배양하며 Cd$^{2+}$5mM을 처리한 경우 약 77.1%와 pH 6.39, 10mM을 처리한 경우 약 90.2%와 PH 5.97 그리고 Pb$^{2+}$ 5mM을 처리한 경우 약 81.1%와 pH 6.00, 10mM을 처리한 경우 약 85.7%와 pH 5.80, 소리쟁이를 배양하며 Cd$^{2+}$ 5mM을 처리한 경우 약 83.9%와 pH 6.32, 10mM을 처리한 경우 약 93.7%와 pH 6.02 그리고 Pb$^{2+}$ 5mM을 처리한 경우 약 88.6%와 pH 6.27, 10mM을 처리한 경우 약 90.0%와 pH 6.02정도였다. Phytochelatin은 고마리와 소리쟁이에서 모두 Cd$^{2+}$와 Pb$^{2+}$ 무처리구에 비해 5와 10mM처리구에서 유도되었음을 확인하였다. 또한, 각 식물재료 내에서 중금속에 의해 유도된 Phytochelatin의 분자량은 고마리의 경우 Cd$^{2+}$에 의해서는 약 4,300-8,600 da, Pb$^{2+}$에 의해서는 약 3,200-9,700 da, 소리쟁이 의 경우 Cd$^{2+}$에서는 약 4,300 da, Pb$^{2+}$에 의해서는 약 3,200-7,500 da 정도였다.

Keywords

References

  1. Korean J. Ecol. v.18 수중 초본 식물의 중금속 내성에 관한 연구 김호준;조도순
  2. Journal of KoSES v.2 구봉광산 주변 중금속의 분포 양상 및 인근농경지와 하천수계에 미치는 영향 이도경;정영덕;이규승
  3. Korean J. Environ. Biol. v.12 Mn과 Zn이 소리쟁이(Rumex crispus L.)의 발아 및 유식물의 생장에 미치는 영향 이호준;윤영진
  4. Korean J. Environ. Agric. v.12 아연광산 인근지역 야생식물중의 중금속 함량 조사 정기채;김복진;한상국
  5. Korean J. Environ. Biol. v.13 달성 폐광산의 식생에 미치는 토양 중금속의 영향 조영호
  6. 수질오염·폐기물 공정시험방법 환경처
  7. Plant and Soil. v.73 Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L.(Caryophyllaceae)from Zaire Baker AJM;RR Brooks;AJ Pease;F Malaisse
  8. Plant Physiol. v.66 Partial characterization of a cadmium binding protein from the roots of cadmium treated tomato Bartolf M;E Brennan;CA Price
  9. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Bradford MM
  10. In Orgins and development of adaptation Adaptation of plants to soils containing toxic metals a test for conceit Bradshaw AD
  11. Can. J. Fish. Aquat. Sci. v.42 Accumulation of copper and zinc in yllow water lily, Nuphar variegatum : Relationships to metal partitioning in the adjacent lake sediments Campbell PGC;A Tessier;M Bisson;R Nougie
  12. Plant Physiol. v.69 Cadmium binding components in soybean plants Casterline JL;NM Barnett
  13. Plant Physiol v.104 Phytochelatins in cadmium sensitive and cadmium tolerant Silence vulgaris De Knecht JA;MV Dillen;PLM Koevoets;H Schat;JAC Verkleij;WHO Ernst
  14. Plant Science v.137 Response to cadmium in cattrot in vitro plants and cell suspension cultures Di Toppi LS;M Lambardi;L Pazzagli;G Cappugi;M Dutrante;R. Gabbrielli
  15. Standard method(for the examination of water and waste water) Franson NAH
  16. Science v.230 Phytochelatins: The principal heavy metal complexing peptides of higher plants Grill E;EL Winnacker;MH Zenk
  17. Experientia v.44 Occurrence of heavy metal binding phytochelatins in plants growing refuse area Grill E;EL Winnacker;MH Zenk
  18. Method in enzymolgy v.205 Phytochelatin Grill E;EL Winnacker;MH Zenk
  19. Plant Physiol v.97 Phytochelation accumulation and cadmium tolerancd in selected cell lines Gupta;PB Goldsbrough
  20. Plant Physiol v.81 Factors affecting the distribution of cadmium, copper and lead and their effect upon yield and zinc content in bush beans(Phaseolus vulgaris L) Hardiman RT;B Jacoby;A Banin
  21. Journal of fermentation and bioengineering v.68 Uptake of heavy metals by Azolla pinnata ans their translocation into fruit bodies of Pleurotus sajor-caju Jain SK;GS Gujral;P Vasudevan;NK Jha
  22. Plant Cell v.6 Functional Homologs of Fungal Metallothionein Genes from Arabidopsis Jianmin Z;PB Goldsbrough
  23. Agric. Biol. Chem. v.47 Isolation of a cadmium-binding protein from cadmium-treated rice plants(Oryza sativa L.) Kaneta M;H Hikichi;S Endo;N Sugiyama
  24. Journal of KOESE v.1 Study on the elimination of heavy metal pollutants in the soil by vascular plant in the river area Kang KH;IS Kim
  25. Korean J. Environ. Biol. v.15 The relationship of Cu content and Phytochelatin in Persicaria thunbergii Kang KH;IS Kim
  26. Plant Physiol. v.110 The composition of metals bound to class Ⅲ. metallothionein(phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tibctorum Maitani T;H Kubota;T Yamada
  27. Biochem. J. v.307 Glutatione-mediated transfer of Cu (Ⅰ) in to phytochelatins Mehra RK;P Mulchandani
  28. Plant Journal v.7 Three families of thiol peptides are induced by cadmium in maize Meuwly P;P Thibault;AL Schwan;WE Rauser
  29. In Lekkas, T. D. In heavy metals in environment v.2 Heavy metal location by analytical electron microscopy in conventionally fixed and freeze-substituted roots of metal tolerant and non tolerant ecotypes Mullins M;K Hardwick;DA Thurman
  30. Bull. Environm. Contam. Toxicol. v.30 Removal of some heavy metals from pollution water by water Hyacinth (Eichhornia crassipes) Muramoto S;Y Oki
  31. Korean J. Environ. Biol. v.13 Studies on the biological magnification of heavy metal and the assay of heavy metal pollution levels in the area of rivers by vascular plants.Ⅱ. The biological magnification of lead, copper, zinc and iron in vascular plants; Persicaria thunbergii and nymphoides peltata Park KN;KH Kang;IS Kim
  32. Korean J. Environ. Biol. v.13 Studies on the biological magnification of heavy metal and the assay of heavy metal pollution levels in the area of rivers by vascular plants.Ⅲ. The removal of lead, copper and zinc from the soil of hebitat by Persicaria thunbergii Park KN;KH Kang;IS Kim
  33. CAN.J.BOT v.62 Cadmium-binding protein in roots of maize Rauser WE;J Glover
  34. Plant Science Letters v.33 Copper-binding protein and copper tolerance in Agrostis gigantea Rauser WE
  35. Physical. Plant. v.67 "Metallothio-like" metal complex in angiosperms; Their structure and function Robinson NJ;PJ Jackson
  36. J. Sci. Food. Agric. v.37 Zinc, copper and nickel concentrations in Rye grass grown on sewage sludge - contaminated soils of different pH Sanders JR;SP McGrath;TM Adams
  37. Biotechnology and Bioengineering v.39 Removal of dissolved metals by plant tissue Scott CD
  38. Water, Air and Soil pollution v.46 Removal and uptake of copper (Ⅱ) by Salvinia natans from waste water Sen AK;NG Mondal
  39. Annu. Rev. Plant Physiol. Plant Mol. Biol. v.41 The heavy metal-binding peptides of plants Steffens JC
  40. v.2 Mechanism of metal tolerance in higher plants. In Effect of heavy metal polution on plants. Metals in the environment Thurman DA;Lepp NW(eds.)
  41. J. Plant Physiol. v.115 Copper binding proteins in spinach tolerant to excess copper Tukendorf A;S Lyszcz;T Baszy ski
  42. In Plant roots Ecophysiology of roots of submerged Aquatic plants Waisel Y;M Agami;A Eshel;U Kafkafi
  43. Elodea nuttallii. Z. Pflanzsenphysiol. B v.92 Kinetics of copper and zinc uptake by leaves and roots on aquatic plant Werff MM;WHO Ernst
  44. Plant Mol. Biol. v.33 The isolation and characterisation of type Ⅱ metallothionein - like genes from tomato(Lycopersicon esculentum L.) Whitelaw CA;JA Le Huquet;DA Thurman;AB Tomsett