토양 및 수계환경에서 Transformation에 의한 세균들간의 수평적 유전물질 전이

Horizontal Gene Transfer among Bacteria by Transformation in Soil and Aquatic Environments

  • 이건형 (군산대학교 자연과학대학 과학기술학부 생물학전공)
  • 발행 : 2000.06.01

초록

실험실에서 형질전환될 수 있는 세균들은 자연환경 조건에서도 형질전환 능력이 발달하는 것으로 알려져 있다. 따라서, 환경 내에서 형질전환 능력이 있는 세균의 존재는 확실한 것으로 여겨진다. DNA는 무기물에 부착된 상태에서는 핵산분해효소에 의한 분해로부터 보호되는 것으로 알려져 있다. 비록 DNA가 토양 속에 분산되어져 일정 비율로 가수분해되더라도, 수 주일 후에도 낮은 비율로 감지될 수 있다. 따라서 free DNA는 자연적 형질전환을 할 수 있을 만큼 충분히 지속될 수 있다. 실험실 조건에서는 세균의 형질전환이 여러 경우 보고되었지만, 자연상태에서 형질전환과 관련된 자료는 매우 적다. 생태학적으로 GMMs로부터 재조합 DNA가 토착 미생물에 전이될 수 있는 잠재력에 대한 문제가 주요 현안이 되었는데, 이는 전이된 DNA가 방출된 세균의 생태학적인 적응력을 변화시켜 생물학적 안전성의 문제를 야기할 수 있기 때문이다. 물론, 방출된 GMMs로부터 재조합 DNA가 토착 미생물에 전이되는 율은 아주 낮은 빈도로 일어나지만, 빈도가 낮다는 것은 그리 중요하지 않다. 왜냐하면, 비록 낮은 빈도로 전이되더라도 유리한 조건을 만나게 되면 전이된 유전자는 선택될 수 있기 때문이다. 이제까지 GMMs는 실험실이나 제한된 환경에서 주로 사용되었지만 앞으로는 개방된 자연 생태계에서 이루어질 전망이다. 그러므로 GMMs가 토착세균에 미치는 영향에 대해서도 연구되어야 하고 동시에 GMMs가 생태계에 방출될 경우 그에 따른 영향평가를 반드시 수행해야 한다.

Laboratory studies have revealed that naturally transformable bacteria develop competence under in situ conditions. Thus, the occurrence of competent bacteria in the environment can be considered as a certainty The persistence of free DNA in natural habitats is influenced by nucleolytic degradation and protection from degradation by adsorption to minerals. Although DNA seeded into natural environment was hydrolysed at substantial rates, but was still detectable at low levels after even several weeks. Compared to the number of laboratory based studies, only a few data have been published dealing with transformation of bacteria in the field. Recently, the potential transfer of recombinant DNA (rDNA) from deliberately or accidentally released bacteria to indigenous microbes has raised biosafety issues, since the persistence of rDNA becomes independent of the survival of its original host and leads to unpredictable, long-term ecological effects. The aim of the present review is to summarise recent literature on horizontal gene transfer (HGT) by transformation among bacteria in both soil and aquatic habitat and special emphasis is placed on recent reports which have addressed HGT among bacteria in the field. [Transformation, Horizontal gene transfer (HGT), recombinant DNA (rDNA), Genetically modified microorganisms (GMMs), Biosafety]

키워드

참고문헌

  1. Appl. Environ. Microbiol. v.46 Protection of sediment-adsorbed transforming DNA against enzymatic inactivation Aardema BW;Lorenz MG & WE Krumbein
  2. FEMS Microbiol. Ecol. v.23 Using microcosms to study gene transfer in aquatic habitats Ashelford KE;JC Fry;MJ Day;KE Hill;MA Learner;JR Marchesi;CD Perkins & AJ Weightman
  3. J. Exp. Med. v.79 Studies on the chemical nature of the substance-inducing transformation of pneumococcal types Avery OT;CM MacLeod;M McCarty
  4. Trends Ecol. Evol. v.12 Evolution of antibiotic resistance Baquero F;J Blazquez
  5. Syst. Appl. Microbiol. v.20 Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils Blum SAE;MG Lorenz;W Wackernagel
  6. Appl. Environ. Microbiol v.59 Natural transformation of Acinetobacter calcoaceticus by plasmid DNA adsorbed on sand and groundwater aquifer material Chamier B;MG Lorenz;W Wackernagel
  7. Microbiol. Rev v.52 Identification and classification of bacterial plasmides Couturier M;F Bex;PL Bergquist;WK Maas
  8. Mar. Ecol. Progr. Ser v.38 Distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments DeFlaun MF;JH Paul;WH Jeffrey
  9. J. Biotechnol. v.64 Horizontal gene transfer as a biosafty issue: a natural phenomenon of public concern Droge M;A Puhler;W Selbitschka
  10. In Genetic interactions among microorganisms in the natural environment (Wellington EMH & JD van Elsas eds.) Antibiotic resistance gene transfer in the environment: an overview van Elsas JD
  11. Appl. Microbiol. Biotechnol. v.35 Inactivation of recombinant plasmid DNA from a human erythropoietin-producing cell mouse line grown on a large scale Fibi MR;M Brker;R Schulz;R Johannsen;G Zettlmeissl
  12. J. Gen. Microbiol. v.139 Factors affecting competence in a high frequency of transformation marine Frischer ME;JM Thurmond;JH Paul
  13. FEMS Microbiol. Ecol. v.15 Transformation of Bacillus subtilis by DNA bound on clay in non-sterile soil Gallori E;M Bazzicalupo;L Dal Canto;R Fani;P Nannipieri;C Vettori;G Stotzky
  14. Soil Biol. Biochem. v.1 The adsorption of nucleic-acids by montmorillonite Greaves MP;MJ Wilson
  15. Soil Biol. Biochem. v.2 The degradation of nucleic-acids and montmorillonite-nucleic-acids complexes by soil microorganisms Greaves MP;MJ Wilson
  16. J. Hyg. v.27 Significance of pneumococcal types Griffith F
  17. Mol. Gen. Genet. v.144 R factor varients with enhanced sex factor activity in Pseudomonas aeruginosa Haas D;B Holloway
  18. FEMS Microbiol. Ecol. v.25 Gene transfer in soil systems using microcosms Hill KE;EM Top
  19. In Risk analysis in Genetic Engineering The toxicology of genetically engineered microorganisms Katz LS;JK Marquis;Levy MA(ed.);HS Strauss (eds.)
  20. Appl. Environ. Microbiol. v.58 Transformation of Bacillus subilis by DNA bound on montmorillonite effect of DNase on the transforming ability of bound DNA Khanna M;G Stotzky
  21. Cold Spring Harbor Symp. Quant. Biol. v.11 Novel genotypes in mixed cultures of biochemical mutants of bacteria Lederberg J;EL Tatum
  22. Nature v.158 Gene recombination in Escherichia coli Lederberg J;EL Tatum
  23. Cold Spring Harbor Symp. Quant. Biol. v.16 Recombination analysis of bacterial heredity Lederberg J;EM Lederberg;NE Zinder;ER Lively
  24. Soil Biol. Biochem. v.31 Transformation and survival of donor, recipient, and transformants of Bacillus subtilis in vitro and in soil Lee GH;G Stotzky
  25. J. Gen. Microbiol v.134 Highly efficient genetic transformation of Bacillus subtilis attached to sand grains Lorenz MG;BW Aardema;W Wackernagel
  26. Appl. Environ. Microbiol. v.53 Adsorption of DNA to sand and variable degradation rates of adsorbed DNA Lorenz MG;W Wackerngel
  27. Arch. Microbiol. v.154 Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA Lorenz MG;W Wackernagel
  28. Appl. Environ. Microbiol. v.57 High frequency of genetic transformation of Psedomonas stutzeri in soil extracts supplemented with a carbon/energy and phosphorus source Lorenz MG;W Wackernagel
  29. Microb. Release. v.1 Simulation of genetic transformation of Pseudomonas stutzeri in extracts of various soils by nitrogen or phosphorus limitation and influence of temperature and pH Lorenz MG;W Wackernagel
  30. Microbiol. Rev. v.58 Bacterial gene transfer by natural genetic transformation in the environment Lorenz MG;W Wackernagel
  31. Mar. Biol. v.20 Deoxyribonuclease activity in seawater and sediment Maeda M;N Taga
  32. J. Exp. Mar. Biol. Ecol. v.14 Occurren and distribution of deoxyribonucleic acid-hydrolyzing bacteria in sea water Maeda M;N Taga
  33. Annu. Rev. Genet v.25 Gene transfer between distantly related bacteria Mazodier P;J Davies
  34. Appl. Environ. Microbiol v.63 Induced natural transformation of Acinetobater calcoaceticus in soil microcosms Nielsen KM;AM Bones;JD van Elsas
  35. Appl. Environ. Microbiol. v.60 Effect of DNA polymer length on its adsorption to soils Ogram AV;ML Mathot;JB Harsh;J Boyle;CA Pettigrew Jr
  36. J. Microbial Methods v.7 The extraction and purification of microbial DNA from sediments Ogram A;GS Sayler;T Barkay
  37. Can. J. Microbiol. v.24 Induction of transformation competence in Azotobacter vinelandii iron-limited cultures Page WJ;von M Tigerstom
  38. FEMS Microbiol. Lett v.41 Effect of mineral iron on the development of transformation competence in Azotobacter vinelandii Page WJ;GA Grant
  39. FEMS Microbiol. Lett. v.97 Adsorption of DNA on clay minerals: protection against DNase I and influence on gene transfer Paget E;LJ Simonet;P Monrozier
  40. FEMS Microbiol. Ecol. v.15 On the track of natural transformation in soil Paget E;P Simonet
  41. J. Gen. Microbiol. v.139 Physiological characterization of natural transformation in Acinetobacter calcoaceticus Palmen R;B Vosman;P Buijsman;CKD Breek;KJ Hellingwerf
  42. Appl. Environ. Microbiol. v.53 Dynamics of extracellular DNA in the marine environment Paul JH;WH Jeffrey;MF DeFlaun
  43. Appl. Environ. Microbiol. v.54 Mechanisms of DNA utilization by estuarine bacterial populations Paul JH;MF DeFlaun;WH Jeffrey
  44. Appl. Environ. Microbiol. v.55 Turnover of extracellular DNA in eutrophic and oligotrophic environments of southwest Florida Paul JH;WH Jeffrey;AW David:MF DeFlaun;LH Cazares
  45. Microbiol. v.57 Gene trasferin marine water column and sediment microcosms by natural plasmid transformation Paul JH;ME Frischer;JM Thurmond
  46. J. Water Pollut. Control Fed. v.61 Recombinant DNA in wastewater: pBR322 degradation kinetics Phillips SJ;DS Dalgarn;SK Young
  47. Appl. Environ. Microbiol. v.56 Conjugal transfer of megaplasmid 2 between Rhizobium meliloti strains in alfalfa nodules Pretorius-Guth I-M;A Puhler;R Simon
  48. Appl. Environ. Microbiol. v.57 Adsorption of plasmid DNA to mineral surfaces and protection against DNaseI Romanowski G;MG Lorenz;W Wackernagel
  49. Appl. Environ. Microbiol. v.58 Persistence of free plasmid DNA in soil monitored by various methods, including a transformation assay Romanowski G;MG Lorenz;G Sayler;W Wackernagel
  50. Appl. Environ. Microbiol. v.59 Use of polymerase chain reaction and electroporation of Escherichia coli to monitor the persistence of extrcellular plasmid DNA introduced into natural soils Romanowski G;MG Lorenz;W Wackernagel
  51. Mol. Ecol. v.2 Plasmid DNA in a groundwater aquifer microcosm-adsorption, DNase resistance and natural genetic transformation of Bacillus subtilis Romanowski G;MG Lorenz;W Wackernagel
  52. Proc. Natl. Acad. Sci. USA v.90 How clonal ar bacteria? Smith JM;NH Smith;M O'Rourke;BG Spratt
  53. Appl. Environ. Microbiol. v.54 Recovery of DNA from soils and sediments Steffen RJ;J Gokoyr;AK Bej;RM Atlas
  54. FEMS Microbiol. Ecol. v.85 Binding of exogenous DNA to marine sediments and the effect of DNA/sediment binding on natural transformation of Pseudomonas stutzeri strain ZoBell in sediment columns Stewart GS;CD Sinigalliano;KA Garko
  55. Proc. Natl. Acad. Sci. USA. v.92 Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment Sullivan JT;Patrick;WL Lowther;DB Scott;CW Ronson
  56. Promiscuous plasmids of Gram-negative bacteria Thomas CM
  57. Appl. Environ. Microbiol. v.56 Transport of genetically engineered Pseudomonas fluorescens strain through a soil microcosm Trevors JT;LS van Elsas;LS van Overbeek;ME Starodub
  58. Appl. Environ. Microbiol v.58 Release of bacterial DNA by marine nanoflagellates, an intermediate step in phosphorus regeneration Turk V;A-S Rehnstam;E Lundberg;A Hagstrom
  59. Appl. Environ. Microbiol. v.62 Natural transformation in river epilithon Williams HG;MJ Day;JC Fry;GJ Stewart
  60. J. Bacteriol v.64 Gene exchange in Salmonella Zinder ND;J Lederberg