The Distribution of $Cd^2+$ and its Physiological Toxicity in Commelina communis L.

닭의장풀 내 $Cd^2+$의 분포와 생리적 독성

  • 이준상 (상지대학교 생명과학과)
  • Published : 2000.03.01

Abstract

The effect of $Cd^2+$ on chlorophyll content, water potentials, ion transport, photosynthesis, stomatal apertures and $Cd^2+$ accumulation of organs in Commelina communis was investigated. 3-weeks old Commelina. communis was transferred to and grown in Hoagland solution in the presence or absence of 5 mM $Cd^2+$ for 4 days. $Cd^2+$ was accumulated in all parts of the organs including leaves, roots and stem. The proximity from the root and the age of leaf were significant factors responsible for the distribution of cadmium. Most of $Cd^2+$ was accumulated in the first leaf which was the nearest from the root. $Cd^2+$) accumulation in the leaves led to significant reductions in a series of physiological metabolism. $Cd^2+$ reduced total chlorophyll content up to 70%, and changed chlorophyll a/b ratio to 2. $Cd^2+$ also reduced about 20% of water potential. The treatment of $Cd^2+$ showed about 60% inhibition of photosynthetic activity when measured at various light intensity (100-1,000 $\mu$mol $Em^-2s^-1$). Similar effect was found in terms of stomatal conductance. Therefore, it could be concluded that the treatment of $Cd^2+$ decrease or block various physiological activities. [Cadmium, Photosynthesis, Stomatal conductance].

$Cd^2+$이 닭의장풀의 엽록소 함유량, 기공 크기, 수분퍼텐셜, 이온 수송에 대한 효과와 기관내의 카드뮴의 축적에 대하여 조사하였다. 3주간 성장한 닭의장풀을 Hoagland용액(${\pm}5mM Cd^2+$)에서 4일 동안 수경배양하였다. 카드뮴은 식물의 뿌리, 줄기 그리고 잎 등 모든 기관에 축적되었다. 뿌리로부터의 거리와 잎의 나이 등이 카드뮴 분포를 결정짓는 가장 중요한 요소였다. 대부분의 $Cd^2+$이 뿌리로부터 가장 인접한 성숙한 첫 번째 잎에 축적되었다. 잎에 $Cd^2+$의 축적은 여러 생리적인 대사의 활성에 감소를 가져왔다. 카드뮴 처리는 70%의 엽록소 함량 감소를 가져왔으며, 엽록소 a/b비도 2로 감소하였다. $Cd^2+$은 또한 20%의 수분퍼텐셜을 감소시켰다. 카드뮴 처리는 여러 광도(100-l,000$\mu$mol $Em^-2s^-1$)에서 광합성 활성을 약 60% 감소시켰으며 기공전도도도 비슷한 반응을 보였다. 따라서, $Cd^2+$이 닭의장풀의 전반적인 생리적 활성을 감소시키거나 차단하는 것으로 추측된다.

Keywords

References

  1. J. Environ. Qual. v.24 The cadmium content of Britich wheat grain Chaudri AM;FJ Zhao;SP McGrath;AR Crosland
  2. Chemistry and biochemistry of plant pigments Chlorophylls Holden M;Goodwin TW(ed.)
  3. Korean J. Ecology v.5 no.4 Studies on the effect of heavy metal on the growth of various plants Kim BW
  4. Korean J. Ecoldgy v.15 no.4 Study on the resistance of various herbaceous plants to the effects of heavy metals-Responses of plants to soil treated with cadmium and lead Kim BW;JS Park
  5. 상지대학교 자연과학 논총 Ecological styudy on the effect of heavy metals to the vascular plants Kim BW
  6. 환경생물학회지 v.17 no.3 Salicylic acid가 닭의장풀의 광합성에 미치는 영향 Lee JS
  7. Plant Physiol. v.110 The composition of metal bound to classⅢ metalothionnein(phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum Maitani T;H Kubota;K Sato;T Yamada
  8. J. Plant Biology. v.39 no.4 Disassembly of chlorophyll-protein complex in Arabidopsis thaliana during dark-induced foliar senescence Oh MH;CH Lee
  9. J. Environ. Quality v.1 Cadmium absorption and growth of various plant species as by solution cadmium concentration Page AL;FT Bingham;C Nelson
  10. Annu. Rev. Biochem. v.59 Phytochyletins Rauser WE
  11. Plant physiol. v.98 Glutathione depletion due to copper-induced phytochyletin synthesis causes oxidative stress in Silence cucubalus Ris De Vos CH;JV marjolein;Vooijs R;H Schat
  12. Annu. Rev. Plant Physiol. Plant Mol. Biology v.41 The heavy metal-binding peptides of plants Steffens JC
  13. Plant Physiology Taiz L;E Zeiger
  14. J. Plant Biology v.40 no.4 Effect of spermine on the phytochelatin concentration and composition in cadmium-treated roots of Canavalia lineata Seedlings Yun IS;ID Hwang;YM Byoung;YM Kwon
  15. Stomata Willmer CM