Loan Portfolio Management of Korean Financial Institutions

국내금융기관의 대출포트폴리오 관리기법

  • 김희경 (상명대학교 금융보험학부)
  • Published : 2000.08.01

Abstract

In 1997 the recession of Korean economy brought about the bankruptcy of large corporations and the large size of non-Performing financial assets which led to IMF financial crisis. One of the major reasons for IMF financial crisis was poor loan management of domestic financial institutions . During the restructuring process of financial institutions since the IMF financial crisis, the importance of the loan management has been recognized. Especially. financial institutions' credit allocation had been concentrated on a few big conglomerates and their subsidies as well as some specific business areas. Hence, risk-diversifying portfolio effects were not reflected in any loan portfolios. The IMF financial crisis in 1997 has clearly showed that credit-risk management is essential not only for individuals' loan but also for portfolios consisting of various loans The main objective of this paper is to provide some suggestions on the direction for financial institutions in Korea to improve their loan portfolio management. Particularly, for the effective management of loan portfolios, this paper introduces quantitative credit-risk management schemes such as KMV models and CreditMetrics which are commonly used in financial institutions in advanced countries. Financial institutions in Korea should make their best efforts to establish a more scientific as well as quantitative loan portfolio management.

과거 국내금융기관의 신용공여는 소수 대기업과 그들의 계열사 및 일부 업종에 집중되었기 때문에 국내금융기관은 위험이 분산된 대출포트폴리오를 소유하지 못했었다. 이번 IMF 금융위기는 다수의 부실채권을 발생시킴으로써 개별 대출에 대한 위험관리뿐만 아니라 대출들로 구성되어진 포트폴리오에 대한 위험관리가 필수적이라는 것을 보여주었다. 본 논문의 목표는 국내금융기관들이 신용위험을 분산시켜 위험-수익 측면에서 효율적인 대출포트폴리오의 관리 방안을 제시하고자 하는 것이다. 본 논문에서는 대출포트폴리오의 효율적 관리를 위하여 선진 금융기관에서 많이 사용하는 계량적 신용위험관리 기법인 KMV Model과 CreditMetrics를 소개하였다. KMV Model은 옵션가격결정모형에 근거하여 기업의 주가수준 및 변동성으로 부터 대출기업의 부도확률을 도출하고, 주가의 상관관계를 토대로 개별 대출들간에 기대수익의 상관관계를 추정한다. 따라서 금융기관은 이 모형을 이용하여 위험이 잘 분산된 효율적인 대출포트폴리오를 구할 수 있다. CreditMetrics는 대출포트폴리오의 위험노출을 계량적으로 평가하는 VaR(Value at Risk)를 구하는 것으로 신용위험으로 인한 대출포트폴리오의 가치변동에 따른 잠재적 손실을 측정하는 기법이다. 이 기법에 따르면 금융기관은 과거 경험에 근거하여 신용등급별로 신용등급의 변동확률을 파악하고, 신용등급의 변동에 따른 대출포트폴리오 가치 변동과 손실가능성을 측정할 수 있다. 이와 같이 국내금융기관은 보다 과학적이고 계량화된 위험관리 기법을 적용하여 개별 대출의 한계위험공헌도 및 대출들 상호간에 위험의 상관관계를 고려하여 신용위험을 분산시키는 대출포트폴리오 관리를 실시해야 할 것이다.

Keywords