Growth of HgCdTe thin film by the hot-wall epitaxy method

Hot-wall epitaxy 방법에 의한 HgCdTe 박막 성장

  • Published : 2000.12.01

Abstract

Using the hot-wall epitaxy method, we grew a $Hg_{1-x}Cd_xTe$ (MCT) thin film in-situ after growing (111) CdTe of 9 $mu \textrm{m}$ as a buffer layer. The value of FWHM of double crystal x-ray diffraction rocking curve was 125 arcsec and the surface morphology was clean with a small roughness of 10 nm. From measuring the photocurrent of the grown MCT thin film, the maximum peak wavelength and the cut-off wavelength were 1.1050 $\mu\textrm{m}$ (1.1220 eV) and 1.2632 $\mu\textrm{m}$ (0.9815 eV), respectively. This peak wavelength corresponds to the peak of the band gap due to the intrinsic transition of the photoconductor. Therefore, the MCT thin film could be used as the photoconducting detector sensing a near-IR wavelength band from 1.0 to 1.6 $\mu\textrm{m}$.

Hot-wall epitaxy 방법으로 GaAs (100) 기판 위에 9 $\mu\textrm{m}$의 CdTe (111)을 완충층으로 성장하고 그 위에 in-situ로 $Hg_{1-x}Cd_x$/Te (MCT)박막을 성장하였다. 성장된 MCT박막의 2결정 x-선 요동곡선의 반치폭 값은 125 arcsec이었으며 표면 형상의 roughness는 10 nm의 작고 깨끗한 면을 나타내었다. 성장된 MCT 박막에 대한 광전류 측정으로부터 최대 peak 파장과 cut off 파장은 각각 1.1050 $\mu\textrm{m}$ (1.1220 eV)와 1.2632 $\mu\textrm{m}$ (0.9815 eV)임을 알았다 이 peak 파장은 광전도체의 intrinsic transition에 기인한 band gap에 대응하는 봉우리이다. 이로부터 MCT 박막은 1.0 $\mu\textrm{m}$에서 1.6 $\mu\textrm{m}$의 근적외선 파장 영역을 감지할 수 있는 광전도체용 검출기로 쓰일 수 있음을 알았다.

Keywords

References

  1. J. Vac. Sci. Technol. v.B9 R. Korenstein;P. Hallock;B. MacLeod
  2. J. Crystal Growth v.86 B. Pelliciari
  3. J. Crystal Growth v.117 I. Bath
  4. J. Appl. Phys. v.65 J. M. Arias;S. H. Shin;J. G. Pasko;R. E. DeWames;E. R. Gertner
  5. J. Appl. Phys. v.67 P. S. Wijewarnasuriya;M. Boukerche;J. P. Faurie
  6. J. Jpn. Assoc. Crystal Growth v.21 M. Kasuga;D. Kodama;H. H. Agiwara;K. Kagami
  7. J. Crystal Growth v.145 K. Shigenaka;L. Sugiura;F. Nakata;K. Hirahara
  8. J. Vac. Sci. Technol. v.B10 S. H. Shin;J. M. Arias;D. D. Edwall;M. Zandian;J. G. Pasko;R. E. DeWames
  9. J. Vac. Sci, Technol. v.B10 R. Sporken;Y. P. Chen;S. Sivananthan;M. D. Lange;J. P. Faurie
  10. Surf. Sci. v.168 J. P. Fourie;C. Hsu;S. Sivananthan;X. Chu
  11. J. Crystal Growth v.187 J. F. Wang;K. Kikuchi;B. H. Koo;Y. Ishikawa;W. Uchida;M. Isshiki
  12. J. Crystal Growth v.152 S. D. Chen;L. Lin;X. Z. He;M. J. Ying;R. Q. Wu
  13. J. Vac. Sci. Technol. v.A8 D. D. Edwall;J. Bajai;E. R. Gertner
  14. Phys. Rev. v.89 C. C. Klick
  15. Phys. Rev. v.101 R. H. Bube
  16. Ⅱ-Ⅵ Compounds B. Ray