Quantum well intermixing of compressively strained InGaAs/InGaAsP multiple quantum well structure by using impurity-free vacancy diffusion technique

Impurity-free vacancy diffusion 방법을 이용하여 압축 응력을 가진 InGaAs/InGaAsP 다중양자우물 구조의 무질서화

  • 김현수 (고려대학교 재료공학과) ;
  • 박정우 (서울대학교 전자공학과) ;
  • 오대곤 (한국전자통신연구원 원천기술본부) ;
  • 최인훈 (고려대학교 재료공학과)
  • Published : 2000.05.01

Abstract

We investigated the quantum well intermixing (QWI) of a compressively strained InGaAs/InGaAsP multiple quantum well (MQW) by using impurity free vacancy diffusion technique. The samples with InGaAs/$SiO_2$ capping layer showed a higher degree of intermixing compared to that of InP/$SiO_2$ capping layer after rapid thermal annealing (RTA). Band-gap shift difference as large as 123 meV (195 nm) was observed between samples capped with InGaAs/$SiO_2$ and with InP/$SiO_2$ layer at RTA temperature of $700^{\circ}C$. Using the InGaAs/$SiO_2$ cap layer, the band-gap wavelength of MQW was changed by the intermixing from 1.55 $\mu\textrm{m}$ band to 1.3 $\mu\textrm{m}$ band with a wavelength shift of a 237 nm. The transform from MQW structure to homogenous alloy was observed above the RTA temperature of $700^{\circ}C$.

Impurity-free vacancy diffusion 방법을 이용하여 압축 응력을 가진 InGaAs/InGaAsP 다중 양자 우물 구조에서 열처리 온도에 따른 무질서 정도를 조사하였다. InGaAs/SiO$_2$ cap 구조가 InP/$SiO_2$ cap 구조보다 급속열처리 (rapid thermal annealing : RTA) 과정에서 더 많은 청색 천이를 나타내었다. 열처리 온도 $700^{\circ}C$에서, InGaAs/$SiO_2$ cap 구조의 경우 다중양자우물의 밴드갭 파장은 1.55 $\mu\textrm{m}$대역에서 1.3 $\mu\textrm{m}$ 대역으로 이동하였으며, InGaAs/$SiO_2$ cap 구조와 InP/$SiO_2$ cap 구조의 밴드갭 파장차이는 195 nm (123 meV)로 높은 선택성을 나타내었다. 또한, DCXRD 스펙트럼으로부터 다중양자우물 구조에서 균일한 합금형태로 완전히 무질서화되는 것을 볼 수 있었다.

Keywords

References

  1. J. Korean Phys. Soc. v.34 O. K. Oh;M. G. Kim;H. S. Kim;N. Hwang;H. T. Lee;K. E. Pyun;C. D. Park
  2. IEEE J. Quantum Electron v.QE-35 Ku-ho chung;Jong-in shim
  3. IEEE J. Quantum Electron v.QE-23 Y. Kawamura;K. Wakita;Y. Yoshikuni;Y. Itaya;H. Ashai
  4. J. Crystal Growth v.145 M. Suzuki;M. Aoki;T. Tsuchiya;T. Taniwatari
  5. J. Appl. Phys. v.73 Nguyen Hong Ky;J. D. Ganiere;M. Gaihanou;B. Blanchard;L. Pavesi;G. Burri;D. Araujo;F. K. Reinhart
  6. J. Appl. Phys. v.81 J. Z. Wan;J. G. Sommins;D. A. Thompson
  7. IEEE Photon. Technol. Lett. v.9 B. S. Ooi;C. J. Hamilton;K. McIlwaneyl;A. C. Bryce;R. M. De La Rue;J. H. Marsh;J. S. Roberts
  8. IEEE J. Quantum Electron. v.30 I. Gontijo;T. Krauss;J. H. Marsh;R. M. De La Rue
  9. J. Appl. Phys. v.69 M. Katayama;Y. Tokuda;Y. Inoue;A. Usami;T. Wada
  10. Appl. Phys. Lett. v.66 E. V. K. Rao;A. Homoudi;Krauz;M. Juhel;H. Thibierge
  11. J. Appl. Phys. v.73 N. H. Ky;J. D. Ganiere;M. Gaihanou;B. Blanchard;L. Pavesi;G. Burri;D. Araujo;F. K. Reinhart
  12. J. Appl. Phys. v.71 W. Xia;s. A. Pappert;B. Zhu;A. R. Clawson;P. K. L. Yu;S. S. Lau;D. B. Poker;C. W. White;S. A. Schwarz
  13. Materials Aspects of GaAs and InP Based Structures V. Swaminathan;A. T. Macrander
  14. Appl. Phys. Lett. v.72 O. P. Kowalski;C. J. Hamilton;S. D. McDougall;J. H. Marsh;A. C. Bryce;R. M. De La Rue;B. Vogele;C. R. Staney;C. C. Button;J. S. Roberts
  15. 4th InP & Related Materials A. Bradshaw;J. H. Marsh;R. W. Glew