Design and Application of Microstrip Line Photonic Bandgap Structure with a Quarter-Wavelength Transformer for The Modified Characteristics of Stopband

변형된 저지특성을 갖도록 ${\lambda}g$/4 변환기를 정합 시킨 마이크로스트립 라인 포토닉 밴드갭 구조의 설계 및 응용

  • Kim, Tae-Il (Dept.of Electronics Engineering, Ajou University) ;
  • Jang, Mi-Yeong (Dept.of Molecular Science & Technology and School of Electronic Engineering,Ajou University) ;
  • Park, Ik-Mo (Dept.of Electronics Engineering, Ajou University) ;
  • Im, Han-Jo (Dept.of Molecular Science & Technology and School of Electronic Engineering,Ajou University)
  • 김태일 (아주대학교 전자공학부) ;
  • 장미영 (아주대학교 분자과학기술학과 및 전자공학부) ;
  • 박익모 (아주대학교 전자공학부) ;
  • 임한조 (아주대학교 분자과학기술학과 및 전자공학부)
  • Published : 2000.09.01

Abstract

This paper presents the photonic bandgap structure that has a defect mode within a broad stopband. In order to create a broad stopband, we eliminated one of periodic stopbands of PBG structure by using a quarter-wavelength transformer and cascaded another PBG structure having a center frequency corresponding to the eliminated stopband. We have demonstrated that it is a simple and effective method that can solve an overlapping problem of periodic stopband in two cascaded PBG structures.

본 논문에서는 넓은 저지대역과, 저지대역내에 결함 모드를 포함할 수 있는 포토닉 밴드갭(PBG) 구조에 관하여 연구하였다. PBG 구조에서 λg/4 변환기를 이용하여 주기적인 저지대역 중에서 특정 저지대역을 제거할 수 있었으며, 제거된 저지대역의 중심주파수에 해당하는 주기를 가지는 일반적인 PBG 구조를 직렬로 연결함으로써 넓은 저지대역을 구현하였다. 이것은 저지대역의 겹침 문제를 효과적으로 해결한 것으로써 넓은 저지대역 안에서 결함 모드를 이용할 수 있게 되었으며, 넓은 저지대역내에서 다중 스위치의 구현을 가능하게 하였다.

Keywords

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton University Press, Princeton NJ, 1995
  2. C.-S. Kee, J.-E. Kim, H. Y. Park, S. J. Kim, H. C. Song, Y. S. Kwon, N. H. Myung, S. Y. Shin, and H. Lim, 'Essential parameter in the fonnation of photonic bandgaps,' Phys. Rev. E, Vol. 59, no. 4, pp. 4695-4698, Apr. 1999 https://doi.org/10.1103/PhysRevE.59.4695
  3. E. Yablanovich, 'Inhibited spontaneous emission in solid-state physics and electronics,' Phys. Rev. Lett., vol. 58, no. 20, pp. 2059-2062, May 1987 https://doi.org/10.1103/PhysRevLett.58.2059
  4. D. J. Ripin, K.-Y. Lim, and G.-S. Petrich, 'One-dimensional photonic bandgap microcavities for strong optical confinement in GaAs and GaAs/AlxOy semiconductor waveguides,' IEEE J. of Iightwave Tech, Vol. 17, no. 11, pp. 2152-2160, Nov. 1999 https://doi.org/10.1109/50.803006
  5. S. Rowson, A. Chelnokov, and J.-M Lourtioz, 'Two-dimensional photonic crystals in macroporous silicon: from mid-infrared to telecommunication wavelengths,' IEEE J. of Lightwave Tech, vol. 17, no. 11, pp. 1989-1995, Nov. 1999 https://doi.org/10.1109/50.802985
  6. R. Cocciloli, F.-R. Yang, K.-P. Ma, and T. Itoh, 'Aperture-coupled patch antenna on UC-PBG substrate,' IEEE Trans. Microwave Theory Tech, vol. 47, no. 11, pp. 2123-2130, Nov. 1999 https://doi.org/10.1109/22.798008
  7. V. Radisic, Y. Qian, and T. Itoh, 'Broadband power amplifier integrated with slot antenna and novel harmonic tuning structure,' IEEE MTT-S Int. Microwave Symp. Dig., pp. 1895-1898, June 1998 https://doi.org/10.1109/MWSYM.1998.700863
  8. T. J. Ellis and G. M. Rebeiz, 'MM-wave tapered slot antenna on micromachined photonic bandgap dielectrics,' IEEE MTT-S Int. Microwave Symp. Dig., pp. 1157-1160, June 1996 https://doi.org/10.1109/MWSYM.1996.511235
  9. F. R. Yang, Y. Qian, R. Coccioli, and T. Itoh, 'A novel low-loss slow-wave microstrip structure,' IEEE Microwave Guided Wave Lett., vol. 8, no. 11, pp. 372-374, Nov. 1998 https://doi.org/10.1109/75.736247
  10. V. Radisic, Y. Qian, and T. ltoh, 'Broadband power amplifier using dielectric photonic bandgap structure,' IEEE Microwave Guided Wave Lett., vol. 8, no. 1, pp. 13-14, Jan. 1998 https://doi.org/10.1109/75.650973
  11. S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, 'Guided and defect modes in periodic waveguides,' J. Opt. Sac. Am B., vol. 12, no. 7, pp. 1267-1272, July 1995
  12. J. C. Chen, H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, 'Optical filters from photonic band gap air bridges,' IEEE J. of Lightwave Tech., vol. 14, no. 11, pp. 2575-2580, Nov. 1996 https://doi.org/10.1109/50.548157
  13. I. Rumsey, M. PickeHvIay, and P. K. Kelley, 'Photonic bandgap structures used as filters in microstrip circuits,' IEEE Microwave & Guided Wave Lett., vol. 8, no. 10, 00. 336-338, Oct. 1998 https://doi.org/10.1109/75.735413
  14. B. Lenoir, D. Baillargeat, S. Verdeyme, and P. Guillzon, 'Finite element method for rigorous design of microwave devices using photonic bandgap structures,' IEEE MTT-S Int. Microwave Symp. Dig., pp. 1001-1004, June 1998 https://doi.org/10.1109/MWSYM.1998.705176
  15. H. Contopanagos, L. Zhang, and N. G. Alexopoulos, 'Thin frequency-selective lattices integrated in novel compact MC, MMIC, and PCA architecture,' IEEE Trans. Microwave Theory Tech., vol. 46, no. 11, pp. 1936-1948, Nov. 1998 https://doi.org/10.1109/22.734516
  16. V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, 'Novel 2-D photonic bandgap structure for microstrip lines,' IEEE Microwave Guided Wave Lett., vol. 8, no. 2, pp. 69-71, Feb. 1998 https://doi.org/10.1109/75.658644
  17. 김태일, 박익모, 임한조, 기철식, 김재은, 박해용, '마이크로스트립 라인을 이용한 PBG 구조의 효과적인 설계방법,' 1999년도 춘계 마이크로파 및 전파학술대회 논문집, vol. 22, no. 1, 183-186쪽, 1999년 5월
  18. D. M. Pozar, Microwave engineering, 2nd Ed., John Wiely & Sons, Inc., pp. 92-96, 1998
  19. S.-S. Oh, C.-S. Kee, J.-E. Kim, H. Y. Park, T. I. Kim, I. Park, and H. Lim, 'Duplexer using microwave photonic band gap structure,' Appl. Phys. Lett., vol. 76, no. 16, pp. 2301-2303, Apr. 2000 https://doi.org/10.1063/1.126326