Design of the Multisection Impedance Transforming Branch-Line Hybrid Using the Genetic Algorithm

유전자 앨거리즘을 이용한 임피던스 변환 브랜치라인 하이브리드 설계

  • Lee, Gyeong-U (Dept. of Electronic Electrical Engineering, Hanyang University) ;
  • Lee, Sang-Seol (Dept. of Electronic Electrical Engineering, Hanyang University)
  • 이경우 (한양대학교 전자전기공학부) ;
  • 이상설 (한양대학교 전자전기공학부)
  • Published : 2000.06.01

Abstract

A design method for a multisection impedance transforming branch-line hybrid using a genetic algorithm suitable for MMIC applications is proposed. In contrast to the previous design methods, an asymmetric structure is introduced to optimize the hybrid. Optimization is performed within the impedance range to achieve the realizable hybrids with a microstrip line in a desired frequency range. This design method is applicable to the hybrid which has the arbitrary power division ratio, impedance transforming ratio, isolation, directivity and bandwidth. The hybrid designed by the proposed method has 3∼10% more bandwidth than the previous results.

MMIC 회로에 적합한 임피던스 변환 광대역 브랜치라인 하이브리드를 유전자 앨거리즘을 이용하여 설계한다. 지금까지의 설계방법과는 달리 비대칭구조를 도입하여 하이브리드를 최적화한다. 각 선로의 임피던스 값은 마이크로스트립라인으로 실제 제작 가능한 범위 안에 들 수 있도록 제한한다. 이 설계 방법은 임의의 전력 분배비, 임피던스 변환비, 아이솔레이션(isolation), 디렉티버티(directivity) 및 대역폭(bandwidth)을 가지는 하이브리드에도 적용 가능하다. 제안된 방식으로 설계된 임피던스 변환 하이브리드는 기존의 하이브리드보다 대역폭이 3∼10% 넓다.

Keywords

References

  1. R. Levy and L. F Lind, 'Synthesis of Symmetrical Branch Guide Directional Couplers,' IEEE Trans. Microwave Theory & Tech., vol. MTT-16, Feb. 1968, pp. 80-89 https://doi.org/10.1109/TMTT.1968.1126612
  2. R. Levy, 'Zolotarev Branch-Guide Couplers,' IEEE Trans. Microwave Theory & Tech., vol. MTT-21, Feb. 1973, pp. 95-99 https://doi.org/10.1109/TMTT.1973.1127930
  3. M. Muraguchi, T. Yukitake and Y. Naito, 'Optimum Design of 3-dB Branch-Line Couplers Using Microstrip lines,' IEEE Trans. Microwave Theory & Tech., vol. MTT-31, Aug. 1983, pp. 674-678 https://doi.org/10.1109/TMTT.1983.1131568
  4. L. F Lind, 'Synthesis of Asymmetrical Branch Guide Directional Coupler Impedance Transformer,' IEEE Trans. Microwave Theory & Tech., vol. MTT-17, pp. 45-48, Feb. 1968
  5. R. K. Gupta, S. E. Anderson, and W. Getsinger, 'Impedance Transforming 3-dB $90^{\circ}$ Hybrid,' IEEE Trans. Microwave Theory & Tech., vol. MTT-35, Dec. 1987, pp.1303-1307 https://doi.org/10.1109/TMTT.1987.1133852
  6. S. Kumar, C. Tannous, and T. Danchin, 'A Multisection Broadband Impedance Transforming Brench-Line Hybrid,' IEEE Trans. Microwave Theory & Tech., vol. 43, Nov. 1995, pp. 2517-2523 https://doi.org/10.1109/22.473172
  7. D. S. Weile and E. Michielssen, ' Genetic Algorithm Optimization Applied to Electromagnetics: A Review,' IEEE Trans. Antennas Propagat., vol. AP-45, Mar. 1997, pp. 343-353 https://doi.org/10.1109/8.558650
  8. R. L. Haupt, S. E. Haupt, Practical Genetic Algorithms. New York: Wiley, 1997
  9. R. L. Haupt, ' An Introduction to Genetic Algorithms for Electromagnetics,' IEEE Antennas & Propagation Magazine, Vol.37, No.2, April 1995 https://doi.org/10.1109/74.382334
  10. J. Michael Johnson, Yahya Rahmat-Samii, 'Genetic Algorithms in Engineering Electromagnetics,' IEEE Antennas & Propagation Magazine, Vol.37, No.2, April 1995
  11. P. L. Werner, R. Mittra, and D. H. Werner, 'Extraction of Equivalent Circuits for Microstrip Components and Discontinuities Using the Genetic Algorithm,' IEEE Microwaves & Guided Wave Letters, vol 8, No. 10, Oct. 1998, pp.321-323 https://doi.org/10.1109/75.735412
  12. HP Advanced Design System 1.1, HP Momentum, Hewlett Packard, Jan. 1999
  13. J. A. G. Malherbe, Microwave Transmission Line Couplers, Artech House, Inc., Dedham, MA, 1988
  14. P. A. Rizzi, Microwave Engineering Passive Circuits, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1988