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From rheometry to rheology
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Abstract

Using a variety of examples from the recent literature on extensional flow of polymer solutions, this paper
shows that simple constitutive equations are unable to capture the diversity of chain conformations in such
flows. Such diversity is a feature of extensional flows and arises because deformation leads to significant
chain extension. Substantial local extension appears even at low strains and the behaviour of these stretched
out portions influences the dynamics of the chain and makes a dominant contribution to the stress. Both the
distribution function and the chain conformation appear to follow different paths during stretching and
relaxation. As a result the second moment of the distribution function does not contain enough information
to correctly predict the dynamics. Resolution of this deficiency in simple constitutive models is one of the

challenges for rheology.

1. Introduction

The last decade has witnessed some major strides in
polymer solution rheology. The advent of several new tech-
niques has yielded a profound understanding of the nexus
between deformation, chain conformation and stress. This
new knowledge has brought out certain deficiencies in our
ability to model flow properties. The resolution of these
difficulties is shaping to be a major goal of rheology in the
new millennium. Here we present a personal perspective
on this subject. While we recognise that significant
advances have also been made in the flow of polymer
melts, this paper is concerned only with solutions. It is
worth recalling that much of the current thinking in
rheology has been influenced by the behaviour of polymer
chains in shear. However, it is well known that the extent
of deformation and chain stretching in such flows is, at
best, moderate. The situation is far more interesting and
complex when flows involving a significant extensional
deformation are encountered. This paper focuses on
extensional deformation.

The advances noted above have been brought about by
several concurrent developments. On the experimental
front the two major achievements have been the devel-
opment of the filament stretching rheometer and the
development of fluorescence microscopy. In the theoretical
arena, improved computing resources has enabled stochastic
simulations to be performed revealing a wealth of detail on
the chain structure.

In this paper we present several examples from the recent
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literature on extensional flows. We show how information
gleamed from these advances permits a better appreciation
of the dynamics of polymer chains. The emerging theme is
that simple constitutive equations are unable to capture the
conformational details to a sufficient degree to enable the
stress in complex flows to be predicted with any degree of
confidence. This is particularly the case where significant
chain stretching is encountered. Severely stretched out
portions of a chain appear even at low strains and these
dominate the dynamics due to the nonlinear force law.
There is an urgent need for a simplification, which allows
the main concepts to be preserved in a tractable form so
that flow simulations can be efficiently carried out.

2. Background

The filament stretching rheometer has permitted us to
subject polymer liquids to an extensional flow. In its cur-
rent form, it represents the culmination of nearly 40 years
of research for the development of a suitable extensional
rheometer. During this period several ingenious designs
such as the Fano flow, the fibre spinning, the opposed jets
have been proposed. Reviews discussing the advantages
and disadvantages of these techniques are available (Gupta
and Sridhar, 1988; Petrie, 1995). The filament stretching
rheometer (Sridhar et al., 1991; Tirtaatmadja and Sridhar
1993) has given a major fillip to the study of stretching
flows of polymeric fluids as witnessed by the large num-
bers of papers, conferences and workshops devoted to this
topic. Many research groups (Spiegelberg et al., 1996,
Solomon and Muller, 1996; Van Nieuwkoop and Muller
Von Czernicki, 1996; Anna et al., 1999) are using versions
of this device. This instrument has also motivated several
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theoretical and numerical studies (Sizaire and Legat, 1997,
Kolte et al., 1997; Yao and McKinley, 1998) to examine
the complex time dependent profiles of the free surface so
that a better understanding of the spatial and temporal
variations of the local deformation in the filament can be
obtained. The consensus emerging from these studies is
that the mid-filament plane undergoes a predominantly
extensional deformation. Anna et al. (1999) have shown
good agreement in the results from three different labo-
ratories using this instrument. The contrast with the dis-
appointing results obtained in the M1 exercise (Sridhar
1990) shows the significant progress in this field. Hence
the filament stretching rheometer has proved to be a
convenient and powerful tool to probe the dynamics of
polymer chains. As a result we now have a significant body
of new knowledge that is proving « serious challenge to
contemporary ideas on constitutive equations.
Rheological measurements represent an ensemble average
of events taking place within the fluid. Several structural
measurements have been devised to complement this
information (Larson 1999). Among such structural probes,
the application of fluorescent microscopy to study the
conformation of DNA molecules by Perkins et al. (1997)
has created much excitement. Using optical traps to pin
one end of the DNA molecule tethered to a polystyrene
bead, these authors were able to image the conformation of
the DNA under the influence of a uniform solvent velocity.
Smith et al. (1998) used a cross-slot flow field and imaged
DNA molecules at the stagnation point of a planar exten-
sional flow field. This work has revealed the amazing
diversity of molecular conformations that can arise during
deformation. These conformations have been labelled
dumbbells, half dumbbells, and folded coils. Fig. 1 shows
a cartoon of these conformations. In a given flow field, the
rate of chain unravelling is quite different for the different
conformations. The configurations in Fig. 1 intuitively
suggest that the dumbbell molecule would stretch faster
than the folded molecule and this is bourne out by exper-
iments. The fact that these various types of conformations
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Fig. 1. Cartoon of the various configurations.
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can emerge from seemingly similar initial conditions, has
led de Genne (1999) to remark that these conformations
represent a distorted picture of what the chain looked like
prior to deformation. Capturing the dynamics of such tortured
chains in a tractable manner is clearly a major challenge.

On the theoretical front, the development of the kinetic
theory for polymers has been one of the outstanding
intellectual achievements in rheology. It provides a rational
basis for analysing the behaviour of a polymer chain in
complex flows and thereby illustrates the mechanisms by
which large stresses are developed even in dilute polymer
solutions. A stunning array of constitutive equations have
been developed either by coarse graining the configuration
of a polymer chain or by incorporating increasingly
sophisticated physics to describe the motion of a chain.
In addition, a variety of mathematical approximations have
been implemented and this has permitted several closed
form constitutive equations to be generated. The choice of
a constitutive equation with an appropriate level of sophis-
tication for a particular problem requires a balance between
mathematical complexity, the number of additional param-
eters and the need to describe specific properties of the
polymer molecule. An exhaustive treatment of such models
can be found in Bird er al (1987), Larson (1988) .

In an actual polymer molecule, the bond lengths and
angles are restricted to quite narrow ranges (Flory, 1969).
A polymer chain can thus be represented as a set of beads
joined by mass less rods, where each bead represents a
centre of mass corresponding to a monomer unit and the
length of each rod connecting successive beads corre-
sponds to the carbon-carbon bond length between mono-
mers. The bead-rod model can be considerably simplified
by replacing a portion of the chain consisting of several
monomers with a single hookean spring describing the
forces required to separate the chain. This bead-spring
model allows the configurational dynamics of a polymer
chain to be investigated without the computational diffi-
culties associated with the fixed bond-length of the bead-
rod model.

The bead-spring chains are able to capture some of the
essential features of real polymer molecules, such as ori-
entability and stretchability plus many internal degrees of
freedom. Two different types of model have been devel-
oped. The first is the Rouse Bead-Spring Chain model. In
this model, excluded volume and polymer-solvent inter-
actions are neglected and the coil is assumed to have a
Gaussian equilibrium distribution of configurations. The
influence of neighbouring beads on the ambient velocity
around a given bead is also neglected (Larson, 1988) lead-
ing to a free draining model. The second model considered
here is the Zimm bead-spring model. The underlying
assumptions for this model are identical to the Rouse
model with the notable exception that the influence of
neighbouring beads on the ambient velocity around a given
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bead is included through the equilibrium averaged Oseen
tensor (Larson, 1988). The resulting equations of motion
are identical to those of the Rouse model with the excep-
tion that the relaxation times of each mode are different.
The Rouse and Zimm models represent two limiting sit-
uations depending on the magnitude of the hydrodynamic
interaction between beads.

These models can however be simplified further by
replacing all of the individual monomers by a single spring
with all the mass concentrated at each end, resulting in the
elastic dumbbell model. Depending on the choice of force
law chosen for the spring it is possible to derive consti-
tutive equations and hence the model can be a useful tool
to describe rheological phenomenon. Starting with the
hookean elastic dumbbell model rheologists have con-
structed a variety of constitutive equations. Each of these
equations introduces additional features and complexity
into the basic dumbbell model (Larson 1988).

Many of these constitutive equations can been solved for
the stress without requiring the distribution function to be
worked out. The hookean spring model does not impose
any restriction on the extension of the spring and this
deficiency has been overcome by the development of non-
linear spring models that impose a certain maximum per-
missible extension Q,. However, this renders it impossible
to derive a closed form constitutive equation from the
diffusion equation for the configuration distribution
function ¥ (Q,t) where Q is the vector connecting the
beads. Mathematically, there are three different approaches
that can be exploited to calculate the stress (see for
example Keunings, 1997). One can numerically solve the
diffusion equation for the evolution of ¥ with the stress
being calculated from the Kramers expression. More
recently, the stochastic differential equation for the chain
trajectory has been solved and the stress calculated by
appropriate averaging (Ottinger 1995). Both these tech-
niques are difficult to apply for complex flow calculations.
A variety of closure approximations have also been
developed and these lead to a closed form constitutive
equation for the stress without having to solve for the
distribution function. The best known among such models
is the FENE-P model.

The effect of these approximations and numerical schemes
are only now being understood and this continues to be an
area of research (Van den Brule, 1993; Liliens et al., 1998).
Stochastic simulations of FENE dumbbells (where the
actual dumbbell distribution is calculated) have shown that
the FENE-P models predict identical steady state behav-
iour in uniaxial extension to the FENE model although
significant differences are observed for transient flows
(Keunings, 1997; Doyle and Shagfeh, 1998). These dif-
ferences appear to be a result of the inability of the pre-
averaging process to capture the true distribution of FENE
dumbbell lengths, which are not well approximated by a
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Gaussian distribution. In particular, only the average
extension of the FENE-P dumbbells is limited to Q,.
Hence some dumbbells will actually exceed this limiting
value. Any differences between the individual distribution
functions are not adequately captured by the second
moment of the distribution ¥ (Larson, 1988).

In a seminal paper, Acierno et al. (1974) compared the
stress growth obtained from bead-rod simulations to a
dumbbell model with an inverse Langevin spring con-
nector. These simulations showed that the elastic dumbbell
model consistently under-predicted the bead-rod stress.
The authors observed that segments of the bead-rod chain
folded over one another during extensional flow tending to
increase the resistance of the chain to affine deformation.
The effect of folded sections on the ability of the chain to
distort with the flow was likened to the internal viscosity
model. In this model, internal barriers to free-range move-
ment result in an additional dissipative stress term in
addition to the elastic restoring force due to chain exten-
sion. Brownian simulations of bead-spring models with a
non-linear spring law have reached a level of maturity.
Larson et al. (1999) have shown that many of the unusual
conformations observed by Smith and Chu (1998) can be
adequately modelled by stochastic simulations using bead-
spring models. A recent review of these techniques is
found in the book by Ottinger (1995).

In summary, these theoretical models have attained a
level of sophistication but at the cost of complexity. The
major advantage of these models is that the internal
structure of the model is exposed. This permits a better
understanding of the data from the experimental techniques
mentioned earlier. In the following examples, we show that
simple constitutive equations fail in extensional flow and
the brownian simulations suggest reasons for this and allow
at least a qualitative understanding of the impact of the
flow field on the chain structure.

3.Example 1: Stress growth at constant strain-
rates

The availability of the filament stretching rheometer
permits a systematic investigation of the effect of con-
centration (c) and molecular weight (M,) on the exten-
sional stresses. Gupta et al. (1999) present a comprehensive
set of data on polystyrene solutions. The concentration
range from 69 ppm to 777 ppm and the molecular weight
from 1.95 M to 20 M. The shear data (see Fig. 2) for such
solutions can be adequately described by the bead spring
model with a pre-averaged non-linear spring (FENE-PM)
along with a Zimm relaxation spectra (McKinley, 1998).
The largest relaxation time (A7) shows the expected
dependence on molecular weight (A, ~ MWI'S), while the
polymer viscosity scales with the square root of the
molecular weight. Note that Fig. 2 shows that the free
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Fig. 2. Dynamic viscosity and storage modulus for a polystyrene
solution. The predictions of the Zimm and Rouse models
are shown (Gupta, 1998).

draining Rouse model does not predict the storage modulus
as well as the Zimm model. Hence under these conditions,
the polymer chain is a compact coil and hydrodynamic
interaction is predominant.

Fig. 3 shows some typical data on extensional stress
growth at a constant strain rate €. The strain rate is chosen
so that comparison between the different solutions is made
under conditions of constant Weissenberg number (Wi=A,¢€).
Fig. 3 shows that at a given strain, the extensional viscosity
is proportional to concentration and molecular weight.
Fig. 4 shows the steady state extensional viscosity as a
function of the Weissenberg number (Wi). Again the exten-
sional viscosity is directly proportional to ¢ and M,,. For Wi
< 4, the steady state extensional viscosity is an increasing
function of the strain rate. For 4 < Wi < 10, the steady state
extensional viscosity is independent of the strain rate.
Surprisingly, for Wi > 10, the steady state extensional
viscosity decreases with increasing strain rate.

Predictions of the FENE-P model are compared to the
extensional viscosity in Fig. 5. Following the methodology
of Spiegelberg and McKinley (1996) and Doyle et al.
(1998), the extensibility parameter b was calculated from
molecular parameters, which yields a value of 39000 for
this fluid. Referring to Fig. 5, predictions using this value
of b is observed to significantly over-predict the steady
state extensional viscosity observed experimentally. There-
fore, following the methodology of Remmelgas er al.
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Fig. 3. The polymer contribution to the transient Trouton ratio at
a constant Weissenberg number. Data shows that the poly-
mer contribution is proportional to ¢ and My,
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Fig. 4. The effect of Weissenberg number on the steady state
Trouton ratio.

(1998), b was chosen to match the steady state extensional
viscosity yielding a value of 20000. The FENE-P simu-
lations, with such a value of b, significantly under-predict
the extensional growth observed experimentally. Even
smaller values of the extensibility parameters (b = 1000)
are required to capture the dramatic increase in stresses at
low strains. Small values of the extensibility parameter
bring the nonlinear spring into play even at low strains and
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Fig. 5. Comparison of FENE-P predictions with transient visco-
sity using different extensibility parameters.

perhaps mimic the development of stretched segments.
However, at low strains the effect of pre-averaging results
in differences between the FENE-P model and the FENE
model.

In order to bring out the effect of multiple relaxation
times this dependency on ¢ and M,, can also be examined
in terms of the Zimm and Rouse models. The Zimm model
would predict a scaling with ¢ and M,,*” for the transient
viscosity and scaling with ¢ and M,,'” for the steady state
viscosity. On the other hand, the Rouse model predicts a
scaling with ¢ and M,, (for transient extensional viscosity)
and with ¢ and M,,” (for steady state extensional viscosity).
Hence the data appears to follow a Rouse-like behaviour
for the transient viscosity. This implies that as the polymer
chain is extended, the hydrodynamic interaction between
chain segments is reduced leading to the Rouse model. The
ratio of the Rouse to Zimm relaxation time can be cal-
culated by modelling the changes in the drag on the poly-
mer chain as a result of deformation. If the fully extended
chain is represented by a cylinder, then the ratio of the drag
coefficients is (Larson 1999)

Guoa F/ln L/
gcoil Coo ( )

where d is the molecular diameter (~10A°% and L is the
contour length. Since the relaxation time is proportional to
the drag, we can estimate the ratio of relaxation times as:

M [§ 004/,
x = A/;_:A“(L/ 9= (ML/200)

Z
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Hence using the Zimm relaxation time evaluated from
shear data, one can estimate the Rouse relaxation time.
Note that this is an upper bound on the Rouse relaxation
time, since the contour length is used to estimate the drag
on the chain even though the chain is not fully extended.
The predictions of a FENE PM model using a Rouse and
Zimm relaxation spectra are compared with experimental
data in Fig. 6. Even with multiple relaxation modes the
Zimm model fails to predict the data. While the Rouse
relaxation spectrum, at least qualitatively, predicts the
transient viscosity, it does over estimate the steady state
viscosity. This is effectively a one-parameter model with
all parameters being calculated, except the Zimm relax-
ation time, which in any case is measured independently.
The only constitutive physics that can predict a decrease of
extensional viscosity with Wi is the concept of anisotropic
drag (Wiest, 1989). This idea postulates that the drag along
the chain is less than that in the transverse direction. Gupta
et al. (1999) show that such a model can predict these data
and their predictions is also shown on Fig. 6.

In order to bring out the effect of pre-averaging, we turn
to Brownian dynamics (BD) simulations of this data to
illustrate other possible complications. Li et al. (1999)
show that parameters extracted from the Zimm theory can
be combined with molecular properties of the polystyrene
solutions accurately predict the steady shear viscosity and
normal stresses. The prediction of the extensional data is
shown in Fig. 7. The Zimm relaxation time is unable to
predict the extensional data and changes in hydrodynamics
need to be incorporated. One advantage of the BD sim-
ulations is that it yields the conformation of individual
chains as they slowly unravel under the influence of the
hydrodynamic forces. Fig. 8 shows a sample of the con-
figurations at a strain of € = 4.2. At these strains the stress
is an order of magnitude lower than the steady state stress
and hence one does not expect significant overall stretching
of the molecule. Surprisingly a large proportion of the
chains exhibit taut segments and the proportion of folded
and dumbbell shaped molecules is very high. As much as
40-50% of the entire population of chains is in the folded
state. The folded and the dumbbell molecules have stretched
out positions and contribute a large stress while the coiled
molecules do not contribute much. Of the molecules that
contribute 90% of the stress of 75% are classified as taut
with a fully extended central position. Typically, the dumb-
bell shaped molecule at a strain of 4.2 contributes 100
times as much stress as a coiled molecule. These folds
unravel rather slowly (Perkins et al., 1999), and can take as
much as 9 strain units to fully unravel. The stress during
the latter phase of unravelling is also expected to change
slowly.

Considering these results it is not surprising that the
simple dumbbell model is only able to predict the correct
magnitude of the stress is by using very low extensibility

March 2000 Vol. 12, No. 1 43



T. Sridhar

767ppm 3.9M PS solution

10000 T

_ ! ,
e =105 :
(€= 10s ; \\ ,

i Rouse
M /

o ‘/anisotropic —
= drag p

1000

Tr

100 ¢

10 F

e e
0 0.5 1 1.5 2 2.5
' Time (s)

Fig. 6. Predictions of the Rouse and Zimm models for transient
extensional viscosity. The middle line represents the model
with a Rouse relaxation spectrum along with anisotropic
drag.

parameter. It is unable to mimic folds. The large number of
slowly changing folded chains also raises the question
whether the steady states shown earlier represent full
extension. Unfortunately experimental difficulties make it
difficult to reach stains of 9 and 10 to enable this question
to be answered with any confidence.

4. Example 2: Stress relaxation

A refinement to the Rouse model attempts to capture the
barriers to small-scale distortions that make the chain
somewhat rigid. In terms of modelling, this is incorporated
in the bead-spring model through the addition of a dashpot.
This has been termed internal viscosity and has remained
a somewhat nebulous concept. However, its consequences
are clear, and it results in an additional stress which is
strain-rate dependent and appears purely viscous in nature.
Over the years, several experimental observations have
been interpreted in terms of a viscous stress and are dis-
cussed by Orr and Sridhar (1996), Spiegelberg and McK-
inley (1996) and Orr (1998). Stress decay during relaxation
was, after extensional deformation, soon identified as one
way of studying this phenomenon. Any viscous stress
would decay rapidly permitting the stress at any strain to be
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Fig. 7. Bead spring simulation of the extensional viscosity with a
Zimm spectrum for three different MW polystyrene solu-
tion (Li et al. 1999).

partitioned into its viscous and elastic components. Fig. 9
shows a family of curves corresponding to the stress
growth and subsequent relaxation at a strain rate of 2s” for
a range of strain. The stresses initially relax rapidly fol-
lowed by a slower relaxation. The initial stress decay was
labelled a viscous stress.

The concept of a viscous stress has been controversial
and several theoretical papers have examined it (Hinch,
1994; Rallison, 1997; Remmelgas et al., 1998; Doyle et al.
1998). Rallison (1997) concludes that the viscous stress
may be a pragmatic way of including the effects of the
shortest relaxation times. Remmelgas et al. (1998) use the
Chilcott-Rallison version of the FENE model with the
dumbbell extensibility parameter obtained from data on
stress growth in uniaxial extension. Such an approach
adequately models the experimental data of Orr and
Sridhar (1996), hence suggesting that the fast relaxation is
due to the non-linear spring law, which manifests as a
decrease in the effective relaxation time. There are some
obvious problems with invoking non-linear spring laws for
explaining rapid relaxation. Such an explanation is avail-
able only at large strain, whereas the experimental data
exhibits fast relaxation even when the chain is unlikely to
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Fig. 8. Typical configuratoins at a strain of 4.2 for 100 molecules
using Brownian bead-spring simulations (Ki et al. 1999)
Schematic of the various configurations is shown above
the figure.

be fully extended.

The stress relaxation is not described by the single
exponential function predicted by the FENE-P model in
the linear regime. The absence of any strain dependence
suggests that within the limitations of the experiments, the
rate of stress relaxation over the range of strain 4 to steady
state (~5.85) is not very different. FENE-P simulations for
a strain rate of 2s” and strain, prior to cessation of flow,
equal to 4 are shown on figure 10a. The extensibility
parameter b is independently chosen so as to match the
initial stress before relaxation. This procedure yielded a
value of b equal to 1000. Two important observations can
be made from the results of this simulation. Firstly, com-
pared to the theoretical value of b (=39000), a very small
value is required to predict the relaxation data. Secondly,
the simulation shows that a steady state has been attained
by a strain of 4 for b = 1000 implying that the rate of stress
relaxation exhibits characteristics normally associated with
a fully stretched molecule. Included on Fig. 10a are FENE-P
predictions for relaxation after a strain of 5.84 with b=
20000. Note that although this simulation is unable to
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Fig, 9. Stress relaxation after various strains for a polystyrene
solution (Orr, 1998).

predict the rate of stress growth observed experimentally,
the model is able to quantitatively describe the rate of stress
relaxation from steady state.

To further illustrate the concept that non-linear stresses
normally associated with highly extended molecules are
also observed at lower strains, the FENE-P prediction from
steady state is compared to normalised relaxation data for
a range of strain in Fig. 10b. Quantitative agreement
between the FENE-P predictions and experimental data is
obtained, further suggesting that the polymer solution
exhibits behaviour associated with highly-extended seg-
ments even at strains lower than required for a steady state
to be achieved.

Brownian dynamic simulations using bead-rod models is
able to throw further light on the chain configurations
during stretching and relaxation (Doyle et al., 1998). Even
at low strains the chain configuration is significantly open
with an extended middle section flanked by folds (or
backloops) at the ends. As the strain increases, the back-
loops gradually unfold until the fully extended configu-
ration is attained. What is surprising is that the process of
relaxation of the chains from an extended to a coiled con-
figuration follows an entirely different path (see Fig. 11).
When the flow stops the chain develops modulations along
its backbone, which is able to rapidly relieve the stresses.
Further relaxation of the chain takes place from the ends.
Hence it appears that the rapid decay of stresses in the
experiments of Orr and Sridhar (1996) are a result of these
modulations.
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Doyle et al. (1998) show that the experimental relaxation
data is similar to the Universal Relaxation Curve based on
the relaxation of an initially straight bead-rod chain (see
also Grassia and Hinch, 1996). Perkins et al. (1994) exam-
ined the relaxation of fully extended single DNA mole-
cules by optical microscopy. Rapid recoil of the free end to
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about 70% of the full length followed by a slower relax-
ation is observed in agreement with the data presented
earlier.

In summary, these data appear consistent with the pres-
ence of highly extended portions and folded sections in the
population of chains. Due to the nonlinearity of the spring
force, these segments make the predominant contribution
to the stress. As a result, it is their dynamics that is meas-
ured in a relaxation experiment. Again simple models are
not capable of portraying such diversity unless abnormal
values of the parameters are used.

5. Example 3: Step-change in strain rate dur-
ing uniaxial extension

In the previous sections, non-linear behaviour was observed
during stress relaxation, which persisted to low levels of
strain. It is intuitively obvious that the response of a chain
to imposed deformation is determined by its configuration.
Rigid segments are expected to respond more rapidly than
coiled chains. To further investigate the nature of stresses
developed during extensional flow, Orr and Sridhar (1999)
have investigated the effect of a step-change in strain rate.
Fig. 12 shows the stress for a step-change in strain rate at
strains of (a) 2.8, (b) 3.6 and (c) 4.4 plotted against strain.
Also included on these plots is the stress growth corre-
sponding to experiments conducted at constant strain rates
of 25! and 4s™'. Prior to the step-change the stress follows
the curve described by a strain rate of 2s™'. At the instant
that the step-change is imposed (shown by the arrow on
these figures), the stress exhibits a jump to the value
associated with a strain rate of 4s”'. This suggests that
following a step-change in strain rate, the polymer solution
responds almost instantaneously to the new strain rate.

We now turn to the response of the purely elastic FENE-P
model to such a strain rate history. As noted in example 1,
the FENE-P model significantly under-predicts the level of
stress observed experimentally at the levels of strain that is
of interest in this section. Thus for the purposes of com-
parison, the behaviour of the FENE-P model was inves-
tigated at a similar level of stress to that observed
experimentally for a strain of 4.4 at a strain rate of 2s™.
The corresponding level of strain required for the FENE-P
model to attain this level of stress was 5.3, and the pre-
dicted behaviour for a step-change in rate from 2s™ to 4s™' is
shown in Fig. 13. Note that this implies that the com-
parisons shown in this figure are at the same stress level
and not at the same strain as in the experiment. Also
included on this figure are predictions for constant strain
rates of 2s™ and 4s™ respectively. In contrast to the exper-
imental results, the FENE-P model exhibits no noticeable
jump and continues to grow monotonically with strain
albeit at the faster rate dictated by the post-step strain rate.
The stress following the step-change is parallel to the curve
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for the constant strain rate of 4s”', and hence the model
prediction is similar to the solution of an initial value
problem.

Referring to example 2, the stress behaviour normally
attributed to highly extended molecules has been observed
which the FENE-P model was only able to describe when
the elastic dumbbell was close to its maximum extension.
Following this line of thought, the response of the FENE-P
model to a step-change in strain rate at steady state is
investigated for a step-change in strain rate from 25" to 4s’!
and vice versa in Fig. 14. The purely elastic dumbbell
model is able to describe the jump in stress observed
experimentally when the dumbbell extension is in the
highly non-linear region.

Based on this observation, a possible explanation for the
experimental behaviour is that for strains much less than
required for steady state, the polymer solution contains
molecules that have experienced a large degree of stretch.
These molecules will then contribute a highly non-linear
response to a step-change in strain rate.

Li et al. (1999) have successfully used bead rod models
to simulate the stress after a step in the strain rate. By
following the dynamics of different classes of configura-
tions they show that a dumbbell shaped chain reacts far
more rapidly than a coiled molecule. We have earlier
remarked on the diversity of configurations obtained during
extensional flow. A large number of folded and dumbbell
molecules, which are taut, are present. The number of
strain units required by a chain to react to the step change
is inversely related to the stress contributed by the molecule.
Hence highly extended molecules which contribute most of
the stress require very little time (strain) to react to the step
change. In many ways they behave like rigid objects.

6. Example 4: Stress and birefringence in exten-
sion

The previous examples have suggested that stretched out
segments of a chain can have a significant impact on the
evolution of the stress. Optical birefringence is sensitive to
local orientation of the polymer chain. The polymer stress,
however, responds to the overall deformed length of the
polymer chain. The stress optical law provides a conven-
ient relationship between birefringence and stress. Signif-
icant improvements in the measurement of optical bire-
fringence (Fuller 1995) now enable even transient flows to
be conveniently studied. The noninvasive nature of the
measurement has resulted in a vast literature on the use of
birefringence to examine flow problems. While the stress
optic rule has been verified in shear flows, there is some
evidence that in strong flows the anticipated chain exten-
sion may lead to a break down of this rule.

Simultaneous measurements of extensional stresses and
birefringence are rare, especially for polymer solutions in

March 2000 Vol. 12, No. 1 47



T. Sridhar

106 g
FENE-P Predictions (a)

[F

©  Strain Rate = 25
O Strain Rate = 4s”'
Step-Change 2s™' - 4s’

10°

P

00060900000

104

Stress (Pa)

103 Step - Change

in Strain Rate

rasved vaveld o

108

©  Strain Rate = 25’
P 10° O Strain Rate = 45
pf Step-Change 4s™' - 25™!
s 10*
o
S
b7t [)

g0°
10° S Step - Change
in Strain Rate

Strain

Fig. 14. FENE-P predictions for a step jump in strain rate at
steady state (Orr and Sridhar, 1999)

extension and an example of such a measurement is that
due to Spiegelberg and McKinley (Doyle et al. 1998). This
work reported a unique example of stress-birefringence
hysteresis. Sridhar et al. (1999) report similar measure-
ments using the filament stretching rheometer and a phase
modulated birefringence system. This work was able to
reach higher strains and we discuss below some of the
main findings.

Fig. 15 shows the transient growth of birefringence and
stress at a constant strain rate. At small time the stress and
birefringence are dominated by the solvent contribution. At
0.4 seconds corresponding to a strain of 2 units, the poly-
mer chain begins to orient with the flow and unravel and as
a consequence both the stress and birefringence increase.
Two identical experiments are shown in Fig. 15 demon-
strating good reproducibility. Fig. 16 shows the polymer
contribution to the birefringence as a function of the strain.
Surprisingly, the strain rate has a minor influence on the
growth of the birefringence. The Trouton ratio is also
independent of strain rate and is predominantly dependent
on strain (Tirtaatmadja and Sridhar 1993). Hence this
suggests a relationship between Trouton ratio and polymer
birefringence. This directly contradicts the stress optical
rule, which postulates a relationship between birefringence
and stress. The saturation birefringence agrees with the
calculated birefringence for a fully extended polymer
chain (Peterlin 1961). However, estimates of the saturation
value of the extensional viscosity using Batchelors formula
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Fig. 15. Growth of birefringence and stress at a constant strain
rate (Sridhar et al., 1999).

for suspensions of elongated fibres are much higher than
observed. The Trouton ratio saturates at about 50% of the
expected value for a fully extended chain.

We have commented on the large number of folded
structures formed during stretching. Larson et al. (1999)
show that folded configurations appear to hesitate at about
50% extension before extending further. These folded
configurations can require 8 to 9 strain units before
reaching full extension. On a extensional viscosity versus
strain plot this translates into a plateau corresponding to a
strain of about 5 units and a slow growth from there up to
a steady state corresponding to full extension. Measure-
ments at such high strains are dogged by experimental dif-
ficulties. The most important issue is filament breakage
and the difficulty of maintaining a constant strain rate.
However, for some fluids these difficulties can be over-
come and Sridhar et al. (1999) present data up to a strain
of 7.8. Fig. 17 shows that the Trouton ratio increases rap-
idly up to a plateau of around 800 before increasing slowly
up to a value of 1500. This shows similarity with the
behaviour of the folded structure discussed above and the
final steady state is also consistent with the estimates of the
Batchelor theory. Birefringence depends on the orientation
at the Kuhn length scale and is not expected to be able to
differentiate between folded and fully extended structures.
The saturation of birefringence under these conditions is
therefore not surprising.
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From the simultaneous measurements of stress and
birefringence, the stress optic coefficient can be calculated.
Fig. 18 shows that the stress optical coefficient decreases
rapidly with increasing strain. This dramatic breakdown of
the stress optic rule is consistent with the bead rod sim-
ulations of Doyle et al. (1998). Fig. 18 also shows the sim-
ulations of Doyle et al. (1998) for two different values of
N, the number of links in the chain. While the values of N
used do not correspond to the polymer used in this work,
the agreement is qualitatively good. The stress optic law is
premised on a linear force law for the spring. The fact that
the stress optic coefficient breaks down at even low strains
suggests that, even under these conditions, the stress arises
predominantly from portions of the chain that are extended
beyond the linear region.

The filament stretching rheometer also makes it possible
to study relaxation of stress and birefringence. Doyle et al.
(1998) suggest that a plot of stress versus birefringence is
a convenient way of displaying the difference in way the
relaxation of stress and birefringence. Fig. 19 shows a plot
of stress versus birefringence for two different strain rates
and demonstrates a pronounced hysteresis. The stress is
much larger, for a given deformation, during start-up than
during relaxation. Doyle et al. (1998) first documented
such a hysteresis and their data is also shown in Fig. 19.
Fig. 19 also includes the predictions of Doyle ez al. (1998)
for a FENE model with configuration-dependent drag
coefficient. The qualitative agreement between these results
is encouraging. Fig. 19 shows that the stress-birefringence
relationship during stretching depends on strain rate.
During relaxation, the stress drops rapidly whereas the
birefringence changes slowly. After this initial period, the
stress birefringence profile is independent of strain rate.
The relaxation data for birefringence in shear and exten-
sion are in qualitative agreement with the bead-rod sim-
ulations of Doyle et al. (1998). The simulations also
demonstrate that the evolution of stress and birefringence
during start-up and relaxation exhibits a pronounced hys-
teresis. This hysteresis arises due to the skewed distribu-
tion of dumbbell lengths in a FENE model. The stress
results predominantly from dumbbells near their full exten-
sion due to the highly non-linear restoring force. On the
other hand, the contribution to birefringence scales linearly
with length. The bead-rod model simulations show that
the chain configuration during start-up and relaxation is
significantly different. During relaxation, the chain essen-
tially relaxes from the free ends. The simulations of Doyle
et al. (1998) and the earlier study of Grassia and Hinch
(1996) suggests an universal curve for a fully extended
chain onto which can be superimposed the relaxation of all
other chains by a shift in time (as shown in example 2).
The process of relaxation of these chains is similar, in that
they all relax from the chain ends in the so-called stem and
flower configuration. As a result, a universal curve for
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stress birefringence during relaxation is not surprising and
relaxation of partially extended chains eventually follows
this curve. Constitutive equations based on pre-averaged
closure approximations such as the FENE-P model are
unable to show such hysteresis (Sizaire et al., 1999)

6. Example 5: Complex flows: Transitions in
chain configuration.

Complex flows can be modelled as a sequence of stretch-
ing and relaxation. The bead rod simulations of Doyle et
al. (1998) have recently suggested that the conformational
dynamics of an initially straight chain during stress relax-
ation are significantly different than that observed for the
same chain during extensional stress growth. The authors
also observe that following a period of stress relaxation, a
large amount of stress appears to be lost whilst the chain
remains relatively extended. Hence if a polymer solution
was to be deformed by a combination of extension and
relaxation, each for different periods, then one could obtain
fluid elements having the same stress but quite different
chain configuration. If such a fluid is further subjected to
an extensional deformation, its response will be determined
by its starting configuration. Orr and Sridhar (1999) have
subjected fluids to a sequence of stretching, relaxation and
further stretching.

50

350

300 x

Polymer Stress (kPa)

0 2000 4000 6000 8000 10000 12000
An'/C (Pa)

Fig. 19. Extensional flow start-up and subsequence relaxation for
stress versus birefringence of a polystyrene solution
(Sridhar et al, 1999); data points : asterisk : Wi = 41.7;
circle : Wi = 16.8 ; square [Doyle et al 1998] : Wi =
2.84, line [Doyle et al 1998] : conformation dependent
FENE model (Wi = 2.84).

Fig. 20 shows the stress growth history for these exper-
iments plotted against strain. A pause of 100 ms, 500 ms
and 3 seconds was introduced into a constant strain rate
experiment at a strain of 5, after which flow was resumed.
The strain rate prior and subsequent to the pause was 2s™.
Note that during the pause the accrued strain is equal to
zero, and hence the flow stops and starts at the same strain.
Note that the behaviour of the stress growth is significantly
different for experiments that have experienced a pause in
flow. The stress growth predicted by the FENE -P model
depends only on the initial value of stress regardless of how
that stress was obtained and is also sketched on figure 20.
This result is in contrast to the experimental results.

One possible conclusion is that even though the fluids are
at the same stress, the polymer chains in the different
experiments have quite different configuration distribu-
tions. It is quite possible that these different distributions
give rise to the same stress but yet contain within them
some information of their previous deformation. The bead-
rod simulations of Doyle er al. (1998) suggest that the
chain configuration relax far slower than the stress. Hence

Korea-Australia Rheology Journal



From rheometry to rheology

10°
Polystyrene Solution

do(€)
de

T T

[} Y
o 4
[Ep]

O
>
>
D
=D
e

104

T

p8e°

>3

D
Stress after Pause

Stress (Pa)
3
¥
a
>3

eég Length of Pause

@® No Pause 1
O 100 ms
a
P

— v
«©
[

107 500 ms

3 sec
—— Equation (5.12)
—-— Equivalent FENE-P
Prediction for 3sec
Pause

101""1""I""I""""I""
3.0 35 4.0 4.5 5.0 5.5 6.0
Strain
Fig. 20. Effect of stopping the deformation at a strain of 5 during
a constant sirain rate experiment. The dynamics on re-
sumption of deformation is much faster than predicted
by the FENE-P type models (Orr and Sridhar, 1999).

The rate of stress growth after the pause is not different
from the rate just before the pause.

T
e

T

each of the three experiments on Fig. 20 still retains some
memory of its configuration prior to relaxation. One simple
estimate of this configuration is arrived by assuming that
during the relaxation process the configuration does not
change. Following this assumption one could further assert
that the stress response of the fluid would depend only on
its configuration. That is a chain with a more open struc-
ture is able to respond more rapidly to imposed defor-
mation than a compact chain. This then leads to an estimate
of the stress growth at the re-inception of flow as the rate
of stress growth at the time the flow stopped (in other
words at the same configuration). The resulting stress
growth is then given by ’

o(e) = 00+(d—cg—£) A)de

de

where G, is the stress where flow is resumed, ™ is the level
of stress attained immediately prior to the pause and € is
the strain. Predictions using the above equation are com-
pared to the experimental data in Fig. 20. The evidence
clearly points to the role of the configuration distribution as
the prime determinant of stress response.

Li et al. (1999) have determined the configuration dis-

o=
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tributions for the experiments of Orr and Sridhar. They
show a hierarchy of configuration changes during the
relaxation and subsequent stretching. For example during
relaxation half dumbbells relax to form dumbbells whereas
folds relax to form coils. The net result is that the con-
formation at the same strain can be quite different even
though the stress is the same. The transitions in these
configurations will determine the stress in complex time
dependent flows. This is not captured by closed form
constitutive equations due to the effect of pre-averaging
the spring law.

In summary, the results indicate that the stress and con-
figuration of a polymer chain appear to have different
dynamics, which the simple elastic dumbbell model is
unable to capture. The configuration distribution contains
within it all the information about the deformation history
and as distinct configuration distributions can lead to the
same stress, the instantaneous polymer stress is by itself
an inadequate measure of its ability to respond to defor-
mation. This example clearly indicates that in order to
mimic complex flows, the changes in chain conformation
needs to be accurately portrayed as this has a dominant
influence on the dynamics.

7. Summary

This paper presents a series of examples from the recent
literature on extensional flows. As anticipated these strong
flows cause a significant distortion of the chain. The
dynamics of the polymer chain is influenced by the
unusual conformations that the chain is able to achieve. In
many situations these conformations reflect the initial
conformation and orientation of the chain. Closed form
constitutive equations are simple because they smear out
these differences. They do not mimic either the diverse
conformations or the distribution function for the chain
extension. Attempts to derive better closure approxima-
tions may be able to solve only the latter problem (Liliens
et al., 1998). Only detailed Brownian dynamics simula-
tions are able to mimic the conformational peculiarities.
Techniques such as the CONFFESIT program (Ottinger
1995) which couples finite element techniques with sto-
chastic simulations are needed to incorporate these in flow
calculations. There are several areas, which require further
work. For example we still do not quite understand the role
of molecular flexibility on chain dynamics. These unre-
solved issues will continue to attract the attention of rhe-
ologists in the new millenium.
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