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1. Introduction

There is no doubt that non-Newtonian Fluid Mechanics
has made significant strides in recent years and there is a
growing belief that the many provocative experimental
phenomena and dilemmas now have a realistic possibility
of being explained theoretically. We intend to illustrate this
optimism by appealing to three important benchmark
problems in non-Newtonian Fluid Mechanics, namely
contraction flows, settling and die swell.

Fig. 1 illustrates the process for the solution of
viscoelastic fluid mechanics problems. In contrast to
Newtonian fluid mechanics, non-Newtonian fluid mechan-
ics has had to be concerned with the development of
general constitutive equations for viscoelastic fluids. These
constitutive equations should in principle lead to the
definition of flow properties that need to be measured to
define the viscoelastic fluid (rheometry) and to the
development of the equivalent Navier Stokes equations for
the solution of all possible boundary value problems. The
process is completed by solution of the appropriate
equations, where the methods of computational fluid
mechanics have been required; analytical methods for
complex flows of viscoelastic fluids are generally not
useful.

The full story, illustrated in Fig. 1, then involves these
various strands of activity and it will be necessary to
consider at least four of them in some detail. For example,
we shall need to be quite specific about the experimental
conditions pertaining to the relevant phenomena. The
flows are invariably complex and the ‘experimental dilem-
mas clearly refer to complex flows, where the flow domain
often involves abrupt changes in geometry, and where the
flow strength is high enough to permit a terminology
which majors on ‘high Weissenburg numbers’ and ‘high
Deborah numbers’. This is of course reasonable obvious,
but it nevertheless needs to be stated.

So we want to address the question: “How do elastic
liquids behave in complex flows?” and it is immediately
apparent that the answer must involve a consideration of
how the same liquids behave in simple flows, so that
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Fig. 1. The procedure for the solution of a Non-Newtonian Fluid
Mechanics problem.

obtaining rheometrical data on the test liquids is an
essential part of the exercise. Such data, when available,
serve more than one useful purpose; they certainly provide
a foundation set of data, which must be accommodated in
the associated mathematical model for the test liquids. That
is to say, the constitutive equation, which is an essential
ingredient in any theoretical resolution of the experimental
dilemmas, has to be consistent with the rheometrical data.
Indeed, if the model cannot simulate behaviour in simple
flows, what chance does it have in complex flows?!

Clearly, the choice of constitutive equation is central to
the whole operation and this choice is far from trivial or
obvious. Indeed, a constitutive model which satisfies the
dual constraints of tractability and quantitative (or even
semi quantitative) prediction may not exist! But that
shouldn’t and doesn’t prevent a search for this missing
link’; but it is wise to be aware of the possibility of
disappointment.

As is illustrated in Fig. 1, the constitutive model has to be
solved in conjunction with the stress equations of motion
and the equation of continuity, to predict and explain the
experimental phenomena and dilemmas. Analytic solutions
are out of the question so far as complex flows are
concerned and Computational Rheology is now an esta-
blished, if fairly recent science, which seeks theoretical
answers to provocative experiments and phenomena. Com-
putational Fluid Dynamics (CFD) has been an essential
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part of the scene for at least twenty years and significant
advances have been made in recent years, with accelerated
progress reflecting the acceleration in the size and speed of
computers.

So, the paper will need to address five topics:

(1) How do the test liquids behave in simple flows? i.e.
Rheometry.

(it) What constitutive equation should we associate with
the test liquids? i.e. Constitutive Modelling.

(iit) What can Computational Rheology tell us about the
way the test liquids ought to behave in complex flows? i.e.
CFD within a non-Newtonian setting,

(iv) How do the liquids behave experimentally in com-
plex flows? What flow features are distinctively rheolo-
gical in nature? What experimental dilemmas emerge?

(v) Can the dilemmas of (iv) be resolved by the
simulations of (iii)? If not, why not? Is it the deficiencies
of the numerical codes or is it the poor choice of con-
stitutive model? What is the current standing of Com-
putational Rheology and what are its successes and
failures? What are the outstanding problems?

In order to answer at least some of these questions, we
shall be selective in our choice of experimental phenom-
ena. We shall also restrict attention to a limited number of
representative test liquids. So, for example, the so called
Boger fluids will figure prominently in the discussion,
since much of the experimental work (certainly on polymer
solutions) has concentrated on this important sub class of
elastic liquids. In the main, they are highly elastic liquids
that exhibit a high resistance in stretching flows, their main
attraction being their reasonably constant shear viscosity.
This means that the well-known problems of defining
dimensionless numbers for shear thinning fluids are
avoided.

2. Some Representative Experimental Dilemmas

A better heading to this section might be some repre-
sentative experimental phenomena since it might be pessi-
mistic to talk of dilemmas and more correct to refer to
challenges.

Highly elastic liquids are known to generate many
extravagant effects not encountered in classical Newtonian
Fluid Mechanics (see Boger and Walters, 1993) but we
shall simply refer to three examples, which have all been
used as important benchmark problems for workers in
Computational Rheology.

2.1. Tubular Entry Flow

The first phenomenon refers to flow through axisym-
metric contractions. The most provocative aspect of visco-
elastic behaviour in these geometries is so called vortex
enhancement, although the associated finding that, in the
build up of vortex enhancement, an unexpectedly unsteady
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asymmetric flow regime can occur is also worthy of
mention and study.

The basic elements of laminar flow through an abrupt
entry circular contraction are illustrated in Fig. 2. The flow
progresses from being fully developed at a plane some
distance upstream from the contraction to being fully
developed in the downstream tube at a distance, L,, from
the contraction plane. Depending on the Reynolds number
of the flow and the fluid type, Newtonian or non-
Newtonian, a secondary flow vortex may be present in the
corner of the upstream tube, as is illustrated. A vortex may
also grow from the re-entrant corner, which has been called
the lip vortex. Conditions do exist for elastic liquids where
both the lip and corner vortices are present at the same
time. The shape of the vortex boundaries may be convex,
concave or straight, with respect to the contraction corner.
Characteristics of the corner vortex are of particular inter-
est in the design of extrusion dies.

Figs. 3-9 all illustrate the influence of fluid elasticity in
a circular entry on the flow in the absence of any shear rate
dependent viscosity effects or fluid inertia. Fig. 3 illustrates
the vortex growth observed for an elastic liquid in a
circular 4 to 1 contraction, which stimulated the imagi-
nation of the Computational Rheology community. Fig. 3
illustrates the growth of the vortex and traces the increase
as the shear rate and Weissenberg number increase. Above
the Weissenberg condition ((d) in Fig. 3), the vortex
becomes asymmetric in the tube and rotates about the tube
wall. The frequency of this rotation increases with increas-
ing flow rate until the periodic helical flow illustrated in
Fig. 4 in a 7.67 to 1 contraction is observed. Figs. 3-9
illustrate the significant effects fluid elasticity has on the
flow; without the elasticity of the liquid, no change in the
flow field would be observed from the small corner vortex
observed and predicted for inelastic Newtonian fluids,
which is similar to that shown in Fig. 3(a) for the early
stage of development of the flow phenomena.

Both a lip and corner vortex can be present in contraction
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Fig. 2. Basic elements of an entry flow for flow from a large tube
through an abrupt entry into a smaller tube.
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(a

G

Fig. 3. Vortex growth for creeping flow in a 4 to 1 contraction for a Boger fluid (0.04% polyacrylamide (Separan AP30) in water and
corn syrup solution). (a) y=1.1 s', R,=5.7X10% W,=0.079; (b) =34 s', R,=1.76X10°, W,= 0.120; (c) y=9.3 57,
R,=48%10°, W,=0.179; (d) y=24.2 5", R,=1.25X10°, W, = 0.204. (From D.V, Boger, D.U. Hur and R.J. Binnington, J.
Non-Newt. Fluid Mech., 20, 1986, 31, and reproduced from Boger and Walters, 1993.)

(d)

Fig. 4. Periodic helical flow in a 7.67 to 1 contraction for a Boger fluid (0.05% polyacrylamide (Separan MG500) in a glucose solution).
Y =300 s', R,=2.9X10™ (a) to (d) illustrate the sequence. The flow lines descent into the downstream tube like a tornado,
i.e. when viewed in two dimensions, the points of contact between the flow lines at the wall, at fixed flow rate, gradually move
downstream, with the secondary flow vortex diminishing in size until it disappears into the downstream tube, with the fluid in
the larger upstream tube surging into the smaller tube. A large new vortex is then formed and the process is repeated. (From H.
Nguyen and D.V. Boger, J. Non-Newt. Fluid Mech., 5, 1979, 353, and reproduced from Boger and Walters, 1993.)

flow at the same time time; this is illustrated in Fig. 5 for
the international test fluid M1. A great deal of detailed
information of the flow properties of fluid M1 is available
(J.Non-Newtonian Fluid Mech., 35(2&3) 1989). In Fig. 5,
notice the interaction of the two vortices, the straightening
of the vortex boundary from sequence (a) to (b), while the
re-attachment length of the cell, L,, hardly changes. Note
also the long photographic exposure time needed for
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definition of both vortices. As the shear rate is increased,
the lip vortex devours the corner vortex, the vortex
boundary becomes concave and the size of the cell
increases, as is shown in Fig. 6. Close examination of the
enlargement of Fig. 6 in Fig. 7 shows the start of a new
lip vortex at the re-entrant corner. In a smaller contraction
(4 to 1) for a Boger fluid of similar composition to Fluid
M1, a pulsating lip vortex can also be observed where the
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Fig. 5. The co-existence of a lip and corner vortex for Fluid M1
(a 0.244% polyisobutylene solution in a mixed solvent
consisting of 7% kerosene in polybutene) in a 22 to 1 cir-
cular contraction. (a) Y=89 s, R, y=0.0044, 1 y=6.8,
X=021 (exposure time = 16 min); (b) y=94 s’, R, =
0.0054, 1=7.2, X=0.195 (exposure time =21 min). (From
D.V. Boger and R.J. Binnington, J. Non-Newt. Fluid Mech.,
35, 359, and reproduced from Boger and Walters, 1993.)

@ ®)

Fig. 6. Vortex growth for Boger fluid M1 in a 22 to | contraction.
(@) ¥=170s", R, =0.0085,1 ¥=12.8, X = 0.25 (exposure
time = 10 min); (b) y=342 s', R,=0.017, 1 y=25,
X =0.35 (exposure time =4 min). As the shear rate is
increased the lip vortex devours the corner vortex, the vor-
tex boundary becomes concave and the size of the cell
increases. Close examination of (b) reveals the start of a
new lip vortex at the re-entrant corner. (See the enlarge-
ment in Figure 7). (From D.V. Boger and R.J. Binnington,
J. Non-Newt. Fluid Mech., 35, 1990, 359, and reproduced
from Boger and Walters, 1993.)

lip vortex oscillates in size with a similar period (see Fig.
8). The growth of a lip vortex through the oscillatory stage
1s shown in Fig. 9. Fig. 10 illustrates in dramatic fashion
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Fig. 7. The Formation of a new lip vortex for fluid M1 in the
presence of a large recirculating vortex (enlargement of
Figure 6).

the sensitivity of the lip vortex to the geometry of the re-
entrant corner in a circular contraction.

Comparable flow visualization experiments have been
carried out in planar contractions, with intriguing simi-
larities but also some provocative differences (see, for
example Boger and Walters, 1993; Evans and Walters,
1986 and 1989). Salient corner vortices and lip vortices are
again in evidence, vortex enhancement is now uncommon
and contaction ratio is an important variable in determining
the dominant flow features. However, the dependence on
contraction ratio here sometimes shows qualitative differ-
ences from that found in flow through axisymmetric
contractions and there are also other even more unexpected
differences. For example, when constant-viscosity Boger
fluids are used as test fluids, the vortices are, if anything
reduced from the Newtonian case. Available evidence
would seem to indicate that some shear thinning is essen-
tial if vortex enhancement is to occur in planar contrac-
tions. So it is evident that the whole subject of ‘flow
through a contraction’ is immensely rich and provocative
and has provided theoreticians with many daunting chal-
lenges.

Clearly, there are numerous and provocative experi-
mental observations in tubular and planar entry flow for
constant viscosity elastic fluids and where prediction of the
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(b)

Fig. 8. Pulsating lip vortex for a Boger fluid (0.1% polyisobutylene in a polybutene and kerosene solution) in a 4 to 1 circular con-
traction. The flow field changes in a cyclic fashion from a-b-c to a-b-c etc. through a cycle of approximately 25 s. y=65.4 s,
R,=0.014, W, = 0.278 (see also Figure 9). (Photograph courtesy of R.J. Binnington, Department of Chemical Engineering, The
University of Melbourne, 1989, and reproduced from Boger and Walters, 1993.)

phenomena represent a considerable challenge.

2.2. Settling of a Single Sphere

The second example of a distinctively viscoelastic
response is provided by the settling problem in the case of
polymer solutions. In this, a sphere is released from rest in
an expanse of liquid, which is contained in a cylindrical
container. The sphere is dropped along the axis of the
cylinder and, although there is some interest in the
transient build up to steady state, the main concern is the
terminal velocity and how this depends on the rheology of
the test fluids and also the ratio (f = &/R), where a is the
radius of the sphere and R is the radius of the cylindrical
container. Experimental data are available on both shear
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Fig. 9. Streakline photographs illustrating the growth of a lip vortex through the oscillating stage in a 4 to 1 contraction for a Boger
fluid. (0.1% polyisobutylene and kerosene solution). (a) 1 ¥=1.56; (b) 1 y=2.30; (c) 1 Y= 2.40; (d) 1 Y=2.41. The product 1
v ultimately approaches a constant for this liquid. This limiting behaviour has been reached in (¢) and (d), where a large change
in the flow is associated with a very small change in 1 y. (From D.V. Boger, D.U. Hur and R.J. Binnington, J. Non-Newt. Fluid
Mech., 20, 1986, 31, and reproduced from Boger and Walters, 1993.)

(©)

thinning and constant viscosity elastic liquids, but our main
concern here is the behaviour of Boger fluids in the settling
experiment.

In the limit of an infinite expanse of test liquid (i.e. p—
(), available experimental data for the drag coefficient
relative to the Newtonian value show a rich diversity, with
the behaviour depending on the physical chemistry of the
dissolved polymer and related issues (see, for example,
Solomon and Muller, 1996). While the drag coefficient for
a Newtonian fluid for a sphere is only a function of the
Reynolds number (C;=24/Re, where C,is the drag
coefficient of the sphere falling in an infinite medium and
Re is the Reynolds number), the drag for a constant
viscosity elastic liquid also depends on the Weissenberg
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Fig. 10. Streamlines for a Boger fluid (0.03% Separan MG500 in
water and corn syrup) in a 4 to 1 contraction illustrating
the sensitivity of the flow field to the geometry of the re-
entrant corner. Each photograph is taken at the same con-
ditions: y=83 s', R,=2.9X10° W,=0.0169. (a)
Abrupt re-entrant corner. (b) A re-entrant corner with a
2 mm radius into a 5.5 mm diameter downstream tube. A
comparison between (a) and (b) graphically illustrates
the importance of the shape of the re-entrant corner on
the resultant flow pattern for an elastic liquid. (Pho-
tograph by R.J. Binnington, Department of Chemical
Engineering, The University of Melbourne, 1991, and
reproduced from Boger and Walters, 1993.)

number (W,) of the flow. The Weissenberg number mea-
sures the relative strength of elasticity in the flow. In the
flow past a sphere, W,= MV, )/la where A is the material
relaxation time, V, is the terminal velocity and a is the
sphere radius. The effect of W, on flow past a sphere in a
constant viscosity elastic liquid can be examined by
plotting the non-dimensional drag coefficient, X, versus W.,.
X, is the ratio of the measured drag to that of a Newtonian
fluid of the same viscosity. Fig. 11 shows X, as a function
of W, for five different constant viscosity elastic liquids;
the data are taken from the literature. Fluids 1, 2 and 4 are
from Solomon and Muller (1996), fluid 3 is from
Tirtaatmadija et al.(1990), and fluid 5 is from Chhabra et al.
(1982). Measurements on constant viscosity elastic liquids
similar to fluids 3 and 5 have been reported by Chiem-
lewski et al. (1990).

The diverse effects of elasticity on flow past a sphere are
observed in Fig. 11. If the elasticity has no effect on the
measured drag for a fluid then X, =1, independent of W,.
In fact, in Fig. 11 for W,< 1, very little deviation from
Newtonian behaviour is observed for any of the test fluids.
However, at higher W, the Boger fluids show drag reduc-
tion or drag enhancement relative to Newtonian fluids.
What mechanism would cause these fluids, all of a con-
stant viscosity, to exhibit divergent drag behaviour? The
magnitude in effect is striking, with the fluid behaviour
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Fig. 11. The effect of Weissenberg number on the non-dimen-
sional drag coefficient for five constant viscosity elastic
liquids. (Reproduced from Boger and Solomon, 1996.)

spanning from 500 percent enhancement to 30 percent drag
reduction. Note that 500 percent drag enhancement corre-
sponds to a factor of five reduction in the velocity of the
sphere falling in a test fluid relative to a Newtonian fluid
of the same viscosity.

The case f = 0.5 was chosen by Computational Rheolo-
gists as one of their benchmark problems. There is now
general agreement that, with the benefit of hindsight, this
was not the most judicious of choices, for reasons that we
shall not elucidate. However, the problem has nevertheless
provided workers in CFD with a convenient basis for
comparison of the various computer codes. So far as
experimental data are concerned, the evidence that is avail-
able for = 0.5 (Walters and Tanner, 1991; Oh et al., 1992;
Jones et al., 1994; Degard and Walters, 1995) would
suggest that, for Boger fluids, there is very little change in
drag with increases in the relevant dimensionless number.
To be specific, if we define a suitable drag coefficient and
Weissenberg number as above, then with increasing W,,
(which for a given test liquid can be accomplished by
dropping heavier and heavier spheres of the same radius),
the drag coefficient does not vary significantly from the
Newtonian zero-Reynolds number value. This state of
affairs is in marked contrast to that for bL10.

The relatively simple settling problem has therefore
provided research workers in the field with a very pro-
vocative series of problems and one is probably justified in
this case of referring to an experimental dilemma.

2.3. Extrudate Swell

The third and final problem we address concems the
well-known problem of extrudate swell. Although industrial
extrusion problems can have a complex set of geometrical
and flow conditions, the one favoured in esoteric studies is
much simpler, with the test liquid exiting a long capillary
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tube (or slit). The relevant swell ratio, S,, is defined by
100(D - a)/a percent, where D is the radius of the extruded
liquid and a is the radius of the capillary. In the case of
Newtonian liquids, it is well-known that S, can vary from
approximately +13% for vanishingly small Reynolds num-
bers to approximately -73% for high Reynolds numbers. In
the case of elastic liquids, the phenomenon of extrudate
swell occurs with values of S, in excess of 2 common
place. Fig. 12 illustrates the phenomena for two fluids of
identical and constant viscosity. Here the basic problem is
well defined and the experiment is relatively easy to per-
form. However, as we shall see, industrial die swell
problems are not so well defined, with large-scale entrance
and memory effects; these add significantly to the com-
plications and therefore the challenges of extrudate swell.

3. Rheometry

Modern advances in instrument and transducer tech-
nology have meant that many research groups have access
to sophisticated rheometers that can readily provide a wide
range of rheometrical information. A determination of the
viscosity/shear rate response over the relevant shear rate
range is of course sacrosanct and little meaningful progress
can be anticipated unless there is a corresponding attempt
to measure the first normal stress difference N, over the
same shear rate range. This is a more difficult pursuit,
especially if the shear rates of relevance are high, but it is
nevertheless an important one.

For more than two decades, a study of the second normal
stress difference N, was deemed unnecessary, even though

@

(b)

Fig. 12. Die swell for liquid extruded into a neutrally-buoyant
medium constructed from a low viscosity silicone oil
and carbon tetrachloride solution of matching density to
the extruded flow medium. (a) Newtonian liquid of vis-
cosity 11.6 Pa s being extruded (R, = 0.001). (b) Boger
fluid of viscosity 11.4 Pa s being extruded (R, = 0.0009,
W, =0.272). (Photographs by R.J. Binnington, Depart-

ment of Chemical Engineering, Monash University, 1981,
and reproduced from Boger and Walters, 1993.)
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numerous techniques for carrying this out were introduced
in the late 60s. The decision was a pragmatic one and was
made for numerous reasons. First, the measurement of N,
was, and still is, very much more difficult than the
measurement of N,, so much so that it was concluded that
if N, was that difficult to measure it could not be that
important. There is clearly some truth in this position,
especially since the data that were obtained on polymeric
systems seemed to indicate that, in relative terms, N, was
small. As a rule of thumb, N,<0, IN,|<0.1 N, was
regarded as being appropriate for a number of test liquids,
including some that had been the subject of detailed
experiments in many laboratories. So, except in isolated
flow situations like flow in a pipe of non circular cross
section and various instability flows (e.g. that associated
with the Couette Taylor-vortex instability), N, was re-
garded as unimportant and expendable. So much so, that
constitutive equations for the liquids were and often still
are constructed on the basis that N, = 0.

However, there has been a renewed interest in N, in
recent years, and, in the 90s, evidence has begun to emerge
that at least for some shear thinning polymer solutions and
polymer melts, N, may not be as small as once thought.
Indeed, values of N, three or more times larger than
traditional wisdom would suggest have been found by
respectable research groups carrying out careful experi-
ments (Magda and Baek, 1994; see also Tanner and
Walters, 1998, p. 139).

This must surely generate a rethink on the part of
constitutive modellers, and at the very least, we might
anticipate a renewed interest in the importance of N, in the
task of solving theoretically unresolved experimental
dilemmas. '

Interestingly, current experimental evidence for constant
viscosity Boger fluids is not inconsistent with the low
estimates of N, mentioned earlier, 1.e. IN,I<0.1 N,.

Small amplitude oscillatory shear measurements have a
long history, but they have taken on renewed vigour in
recent years for more than one reason. Certainly, modern
rheometers now make the determination of the storage
modulus G' and loss modulus G’ a routine procedure and,
not surprisingly, research groups are making use of this
improvement in rheometer design and operation. But these
improvements have also coincided with the growth of
interest in Computational Rheology and the realisation that
any preoccupation with single relaxation time constitutive
models is now misplaced. So, more and more computer
codes are being written for multimode differential models
and for integral constitutive models which require a full
relaxation spectrum (either continuous or discrete).

Therefore, small amplitude oscillatory shear measure-
ments are viewed by many as indispensable tools in the
task of constructing constitute models. The problem has
now inevitably shifted to the problem of calculating the
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relaxation spectrum from the experimental dynamic data.
The mathematical problem is known to be ill posed, but
this hasn’t prevented the emergence of a lively and com-
petitive industry in computer packages for the purpose.

Another rheometrical function of increasing importance
is the uniaxial extensional viscosity 1. Its measurement is
fraught with difficulties. In the case of polymer melts, the
problem is one of maintaining the extensional deformation
long enough for a steady state to be reached. In the case of
polymer solutions, the problems are potentially more acute
and revolve around the difficulty of generating experi-
mentally a constant strain rate extensional flow. This hasnt
prevented the development of a number of techniques,
including variants of the basic spinning technique, stagna-
tion flow devices, and flow through a contraction. Recent
collaborative ventures involving round-robin tests on a
number of test liquids such as M1, Al, S1, have high-
lighted the basic futility of the exercise. There has been
little or no agreement between the various sets of data and,
apart from some isolated recent experiments which have
carefully adopted the spinning technique (see, for example,
Orr and Sridhar (1999) and Spiegelberger and McKinley
(1996)), no-one is now claiming that their technique
provides unambiguous measurements of the steady-state
extensional viscosity Mg.

However, many of the available techniques are naturally
dominated by an extensional deformation component and
can thereby fulfil a useful quality-control function. Of
much more importance in the present context is the utility
of these devices in a critical-experiment mode. So, for
example, a constitutive model is constructed on the basis of
steady-shear and oscillatory-shear data and this model is
them solved taking full cognisance of the imperfect
kinematics of the various techniques. The resulting predic-
tions are next compared to the experimental results, and the
agreement or otherwise between the predictions and the
experimental data from the extensional devices is a test of
the utility of the constitutive model.

This procedure has revealed a potentially depressing
situation. Certainly, the various extensional rheometers can
provide various functions, which we may very loosely call
extensional viscosities, but their true utility must now be
seen in their capacity of crucial experiments. It is obvi-
ously useful to test any constitutive model, which is based
on shear, in a relatively simple flow which has a strong
extensional component, before attempting to use it to
resolve and explain experimental dilemmas, which are
invariably associated with even more complex flows.

It would be wrong to view Rheometry as being important
only within the context of constitutive modelling, but there
is no doubt that, as process modelling becomes ever more
popular, one of Rheometrys main applications will be in
the construction of mathematical models for rheologically
complex fluids.

34

4. Constitutive Modelling

It is fairly obvious that any theoretical resolution of
experimental dilemmas must rely on the availability of a
suitable constitutive model for the test liquids. Since the
flows are complex, there is no possibility of being general
in this respect and some approximation must be tolerated.
The question then is this: is it possible to construct
constitutive equations which are simple enough to permit
numerical solutions for the complex flows of interest and
yet general enough to have the required predictive capac-
ity? The answer to this important question must depend in
part on the test liquid under study, but for highly-elastic
polymeric liquids, the construction of suitable constitutive
equations is far from being a routine operation and there is
no guarantee of success, even given the growing strength
of present day rheological research.

The constitutive equations we are seeking must satisfy
certain constraints which are shown schematically in Fig.
13. So, the equations have to satisfy certain formulation
principles. These have been known for nearly half a
century and are not controversial.

The form of the equations can be guided by a knowledge
of the microstructure of the liquids and microrheology can
have an important input into the formulation procedure.
Indeed, some would argue that the way forward is to
bypass the constitutive model step altogether and to pro-
ceed directly from a knowledge of the microstructure to
flow simulation. We anticipate that much of the rheological
research which will be carried out in the next five to ten
years will be expended in this area.

As we have already intimated, available rheometrical
data provide an indispensable input, and it is clearly
essential that the rheometrical functions for the chosen
constitutive model should match those obtained experi-
mentally.

The final input into the process of constitutive modelling

MICRORHEQLOGY RHEOMETRY
FORMULATION Constitutive APPLICATION
PRINCIPLES - IN MIND
Equations

COMPUTATIONAL
FLUID MECHANICS
(COMPUTATIONAL RHEOLOGY)

Fig. 13. Essential elements in the construction of a Constitutive
Equation.
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is the application in mind. In other words, we must have a
horses for courses attitude to make use of any simplifying
flow characteristic. Just one example will suffice to illus-
trate the point. :

Any spinning flow will clearly involve an important
extensional flow component and it is important in this case
to be precise about the extensional viscosity prediction of
the model, with if necessary a less rigorous attitude to
some of the other rheometrical predictions of the model.
This condition is not one which rheologists defend with
any conviction or enthusiasm, and its very mention is an
indication of the inherent difficulties in constructing
constitutive models that have both utility and relative
simplicity.

A cursory glance of the literature would soon highlight
the plethora of constitutive possibilities and it is true to say
that the popularity of many of these has been ephemeral.
However, a fairly recent influential Workshop on Con-
stitutive Equations led to a measure of agreement between
the international experts present and a report of the
Workshop has been published (Pearson, 1994).

So far as polymer melts are concerned, various forms of
the so-called KBKZ model were favoured. These required
damping functions to generate realistic rheometrical data
and the forms suggested by Wagner (1978) and Papana-
stasiou et al. (1983) seem to be those in current favour.
Seven or more relaxation times are considered necessary
and it is here that the current preoccupation with the
inversion of dynamic data to yield a discrete relaxation
spectrum is seen to have an outlet and a motivation.

So far as dilute polymer solutions are concerned,
variants of the FENE dumbbell models are currently in
vogue and the so-called Chilcott-Rallison model has had
an extensive following. However, the Workshop made it
abundantly clear that any preoccupation with just one
relaxation time was no longer tolerable, especially when
attempts are made to predict quantitatively (or even
semi-quantitatively) experimental data on complex flows.

It is evident that the important but complicated task of
deciding on constitutive models for polymeric fluids has
now reached a level of consensus. The atmosphere is not
one of excessive optimism and the need for some com-
promise between tractability and generality is conceded,
if grudgingly.

5. Computational Rheology

Computational Rheology is a relatively new field which
came into prominence in the 70s as a result of two main
factors. The first concerns the acknowledgement that in
simulating complex flows of highly elastic liquids,
analytic solutions are generally out of the question and
that numerical methods are indispensable. The second
refers to the growing availability of computer power in
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that period, which made numerical simulation a realistic
possibility.

The basic wherewithal for solving problems for both
differential and integral constitutive equations was soon in
place and the frustrating delays caused by the ubiquitous
high Weissenberg number problem were slowly resolved.
A popular introduction to the subject entitled Compu-
tational Rheology: A new science has been written by
Crochet and Walters (1993), and this paper highlights the
significant advances that have been made in recent years.
Numerous numerical techniques have been employed,
most notably finite-elements, but the finite-difference and
spectral methods have also their adherents. The finite-
volume method is favoured by some.

It is probably true to say that the level of sophistication
in the constitutive model now presents few fundamental
problems and the field is expanding as fast as the
increase in computer power will allow. An excellent
recent review is that of R. Keunings (to be published in
Computational Fluid Dynamics Journal, 2000).

6. Comparison of Numerical Simulations with
Experimental Results

We are now in a position to refer the reader to the
important comparison between simulation and experi-
ment. In the case of contraction flow, there has been little
difficulty in recent years in predicting vortex enhance-
ment like that shown in Fig. 3 in a qualitative sense, but
quantitative agreement between theory and experiment
has been and still is elusive.

The ubiquitous disagreement between the contraction
flow experiments of Boger and the innovative numerical
simulations of Crochet was a well-known talking point at
international conferences for ten years and has now
entered scientific folklore. The initial breakthrough has
also been well documented (Boger er al, 1992). This
involved the simple observation that the initial massive
disagreement was due to nothing more sophisticated than
different definitions of the appropriate Weissenberg
numbers! With this in place, there was no difficulty in
obtaining at least semi quantitative agreement between
theory and experiment for vortex enhancement, but
quantitative agreement remains elusive. This particular
problem has important geometrical singularities at the
re-entrant corner (see Fig. 10), and, although there have
been noteworthy attempts to resolve the corner singular-
ity problem, the implementation of these analyses has
yet to be put in place.

While Fig. 3 shows that viscoelasticity does indeed
generate re-circulating regions and that the qualitative
nature of these re-circulating regions can be predicted,
many outstanding problems remain to be solved. There
is much experimental evidence that observed vortices are
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generated from the lip of the abrupt contraction and not
from the enhancement of the Newtonian corner vortex.
This phenomenon is graphically illustrated in Figs. 5, 6
and 7; few numerical results have yet been able to
demonstrate this effect. It is also true that the maximum
size of vortices calculated at the present time is much
smaller than that of observations; the calculations seem
to show saturation of the vortex size, which is not
observed experimentally. In fact, some experiments
(McKinley et al., 1991) reveal an apparent bifurcation
from steady state flow to a time dependent rotating flow
beyond some value of the Deborah number. This phe-
nomenon is illustrated in Fig. 8 and was beautifully
quantified in the McKinley et al. (1991) paper. Despite
recent efforts in this direction, bifurcations have not been
detected in numerical simulations.

Lack of success in simulating these complex patterns
observed in circular contraction flows is presently attrib-
utable to at least three possible causes: a misunder-
standing of the behaviour of the fluid in the re-entrant
comner, as is illustrated in Fig. 10; the inability of the
constitutive equations to capture the behaviour of real
fluids in strong complex flows; and the possible inade-
quacies of numerical codes. It is likely that three-di-
mensional time-dependent codes will be needed to tackle
what would appear at first sight to be a steady axisym-
metric problem.

Contraction flows clearly demonstrate that computa-
tional rheology is still not able to answer all the questions
arising in non-Newtonian flow in complex geometries, but
nevertheless it must be seen as an indispensable tool in the
pursuit of basic understanding of the flow structure.

The entry flow problem has turned out to be far more
complex than ever anticipated, yet the impact the problem
has had in linking simulation to numerical prediction has
been immense.

So here we have a case of slow progress, but significant
challenges remain. The benchmark settling problem is in
better shape and provides an excellent illustration of the
successes and frustrations of the current situation. It is in
fact an ideal vehicle to discuss the basic theme of this
paper.

The availability of a benchmark problem was indis-
pensable to progress in this area. This concerned the
B=0.5 situation for the upper Convected Maxwell
(UCM) model, which was initially thought (somewhat
naively perhaps) to be a useful first approximation for
the Boger fluids used in the experimental work.

Walters and Tanner (1991) reviewed the state of the
science in the early 90s and the resuit was both enlight-
ening and depressing. Fig. 14 provides the simulations
obtained by several respected research groups for the UCM
model and B=0.5. At that time, it would have been
ludicrous to seek better agreement between theory and
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Fig. 14. Early viscoelastic drag force predictions using an Upper
Convected Maxwell fluid for b = 0.5. The drag force in
the limit of low Reynolds number is given by F =6 K
(B, W,) p h a. For a Newtonian fluid with b=0 and W,
=0,K=1andforb=0.5and W, =0, K = 6. A: Crochet
(1988); B: Carew and Townsend (1988); C: Lunsmann
et al. (1993); D: Zheng et al. (1990); E: Hassager and
Bisgaard (1983); E: Suging and Tanner (1986).

experiment through a more judicious choice of constitutive
model. The problem was placed firmly at the door of the
numerical analysts and their methods, who were fortu-
nately up to the task. The basic difficulty was highlighted
as the resolution of the thin stress boundary layers that
were found to occur in this problem, particularly of course
at high Weissenberg number. When these were accom-
modated, mainly through convenient mesh refinement,
very commendable agreement was obtained up to a W, of
1.6. The programs failed to converge at this point and W,
= 1.6 was seen as some kind of barrier and it was even
conjectured that this barrier reflected a subtle change in the
flow regime. However, as it became possible to refine the
appropriate meshes yet further, it was soon conceded that
W, = 1.6 was no barrier at all and the appropriate W, range
was extended - to 3.0 in some cases. Fig. 15 contains a
more recent set of simulations and readers may be excused
a feeling of déja vu! Undoubtedly the new lack of
agreement is related to inappropriate mesh refinement and
related problems in some of the simulations and there is
every likelihood that within a short period of time the
agreement between W, = 1.6 and W, = 3.0 will be as good
as that shown in Fig. 15 for lower W, values.

The important issue now is not the small disagreement
between the different numerical schemes; it is rather the
clear disparity between the sizeable drag reduction
predicted by all the simulations and the experimental
data, which we have indicated shows little change in the
drag coefficient with Weissenberg number for some

Korea-Australia Rheology Journal



Experimental dilemmas in non-Newtonian fluid mechanics and their theoretical resolution

P N N
w
Y
=2 D2

Fig. 15. Recent viscoelastic drag force predictions using an
Upper Convected Maxwell fluid for b =0.5. Only those
results have been included that exceed a Weissenberg
number of 2 and are obtained on the finest mesh
reported. A: Jin ef al. (1991); B: Luo (1996); C: Ware-
chet (1997); D: Baaijens et al. (1997); E: Sun et al.
(1996). (Reproduced from Baaijens, FPT., 1998.)

Boger fluids at least.

Since the basic accuracy of the numerical codes is no
longer in doubt, the reason for the discrepancy is self
evident -the UCM model is too simple for the Boger
fluids used in the experiments and the settling problem
can now be viewed as a convenient critical experiment to
assess the utility of constitutive models for the Boger
fluids. (see, for example, Satrape and Crochet, 1994).

The critical problem in regard to settling is the 8 = 0 case
where the magnitude of the drag enhancement and
reduction was striking, as was illustrated in Fig. 11. Since
all of the researchers whose data are shown in Fig. 11 have
taken into account all effects for the measured drag, the
differences observed are significant. These differences
suggest that more than one dimensionless group is required
to determine the drag beha-viour for constant viscosity
elastic liquids, a conclusion which perhaps is not surprising
since the next most complicated constitutive equation

Diameter = 20mm

beyond the upper Convected Maxwell model is the
Oldroyd-B model which contains both a relaxation and
retardation time; this would lead to two dimensionless
groups, in contrast to the one for the UCM. The challenge
now for creeping flow around a sphere is in fact to deal
with the differences observed in Fig. 11, which is the subject
of current research in non-Newtonian fluid mechanics.

We now pass on finally to the extrudate swell problem.
It has long been possible to predict extrudate swell in a
qualitative sense and the current state of the science
concerning accurate prediction is best illustrated by refer-
ring to a specific example highlighted by Crochet and
Walters (1993).

The experiments concern a high density polyethylene
melt studies by Koopmans (1992). He used the experi-
mental layout shown in Figure 16 In the circumstances of
interest here, Koopmans obtained a die swell of about 180
percent. Fig. 17 contains numerical predictions obtained by
Goublomme er al. (1992) using a powerful finite element
code and a reasonable description of the rheometrical
behaviour of the melt.

The top picture (Fig. 17a) shows the form of the free
surface for the Wagner model, obtained on the assumption
that the capillary tube is of infinite length. The computed
swell ratio in this case was 144 percent, which is well
below that found experimentally. When the same Wagner
model was applied to the geometry shown in Fig. 17b, an
extravagant die swell of the order of 800 percent was
obtained, which reflects the dominance of the elastic
character of the model under the conditions pertaining in
the experiments. Clearly this prediction was unacceptable.

When Goublomme et al. (1992) used an irreversible
version of the Wagner model and also introduced a second
normal stress facility, they predicted a die swell of 186
percent, which was reasonable close to the experimental
value. So, we have here, once again, an example of the
application of the Scientific Method, with the comparison
of the numerical simulations and the experimental data
providing useful, indeed indispensable, information about
the level of sophistication required in the chosen con-
stitutive model.

Diameter = 2mm : %

30 cm ‘|

'4

|

Fig. 16. The Koopmans experimental layout for die swell measurements on high density polyethylene (Koopmans, 1992).
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Fig. 17. Simulation of the swelling of a high density polyeth-
ylene with a Wagner model, (a) out of a long capillary
tube, and (b) out of a die with a conical entry section.
The results are very similar to experimental data when
one uses a modified rheological model (c). (Reproduced
from Crochet and Walters, 1993.)

7. Conclusion

The paper has highlighted some provocative experi-
mental phenomena in the flow of highly elastic polymeric
liquids in complex geometries. We have argued that many
of them are now accessible to modern numerical simula-
tion. Computational Rheology has come of age and it is to
be viewed as an essential part of the basic Scientific
Method, which is now being used with some success to
resolve any remaining experimental dilemmas. At the
present time, any outstanding problems are usually due to
an inappropriate or oversimplified choice of constitutive
model.
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