Performance Improvement of Radial Basis Function Neural Networks Using Adaptive Feature Extraction

적응적 특징추출을 이용한 Radial Basis Function 신경망의 성능개선

  • 조용현 (대구효성가톨릭대학교 공과대학 컴퓨터정보통신공학부)
  • Published : 2000.06.01

Abstract

This paper proposes a new RBF neural network that determines the number and the center of hidden neurons based on the adaptive feature extraction for the input data. The principal component analysis is applied for extracting adaptively the features by reducing the dimension of the given input data. It can simultaneously achieve a superior property of both the principal component analysis by mapping input data into set of statistically independent features and the RBF neural networks. The proposed neural networks has been applied to classify the 200 breast cancer databases by 2-class. The simulation results shows that the proposed neural networks has better performances of the learning time and the classification for test data, in comparison with those using the k-means clustering algorithm. And it is affected less than the k-means clustering algorithm by the initial weight setting and the scope of the smoothing factor.

본 논문에서는 적응적으로 추출된 입력 데이터의 특징을 은닉층 뉴런 개수와 중심값 설정에 이용하는 새로운 radial basis 함수 신경망을 제안하였다. 제안된 신경망에서는 입력데이터의 특징을 효과적으로 추출하기 위해 적응 학습알고리즘의 주요성분분석 기법을 이용하였다. 이렇게 하면 주요성분분석 기법이 가지는 대용량의 입력데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 장점과 RBF신경망이 가지는 우수한 속성을 그대로 살릴 수 있다. 제안된 기법의 radial basis 함수 신경망을 200명의 암환자를 2부류(초기와 악성)로 분류하는 문제에 적용하여 시뮬레이션한 결과, k-평균 군집화 알고리즘을 이용한 radial basis 함수 신경망에 의한 결과와 비교할 때 학습시간과 시험 데이터의 분류에서 더욱 우수한 성능이 있음을 확인할 수 있었다. 그리고 신경망의 초기 연 결가중치에 대한 의존도와 평활요소의 설정여유도 측면에서도 우수한 특성이 있음을 확인할 수 있었다.

Keywords