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Abstract

In this paper, we address the Bayesian hypotheses testing for the comparison of Weibull
distributions. In Bayesian testing problem, conventional Bayes factors can not typically
accommodate the use of noninformative priors which are improper and are defined only up
to arbitrary constants. To overcome such problem, we use the recently proposed hypotheses
testing criterion called the intrinsic Bayes factor. We derive the arithmetic and median
intrinsic Bayes factors for the comparison of Weibull lifetime model and we use these

results to analyze real data sets.

1. Introduction For lifetime studies, Weibull distribution

is perhaps the most widely used lifetime

Lifetime studies are a precious source of  model. Its application in connection with

information for product manufacturers. lifetimes of many types of manufactured

They allow one to compare lifetime items has been widely advocated, and it has

distributions  of  competitors  products. been used as a model with diverse types of

Comparisons of product designs, materials, items such as vacuum tubes, ball bearings
suppliers and production periods are some and electrical insulation.

of the issues addressed by these studies. In Bayesian testing problem, the Bayes
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factor depend on rather strongly on the
prior distributions, much more so than in,
say, estimation. So, the Bayes factor under
proper priors, have been very successful.
However, elicitation of subjective prior
distributions is impossible, because of time
and cost limitations, or resistance or lack of
training of clients. Also subjective elicitation
can easily result in poor prior distribution
and statistical analysis is often required to
So, the

priors has

appear objective. literature on

noninformative grown enor-
mously over recent years. There have been
several excellent books or review articles
that have been concerned with discussing or
comparing different approaches to develop-
ing noninformative priors (See Ghosh and
Mukerjee, 1992).
But noninformative priors such as Jeffrey's
(1961) priors or reference priors (Berger
and Bernardo (1989, 1992)) are typically
improper so that such priors are only
defined up to arbitrary constants which
affects the values of Bayes factors. So,
Geisser and Eddy (1979), Spiegalhalter and
Smith(1982), San Martini and Spezzaferri
(1984) and O'Hagan (1995) have made
efforts to compensate for that arbitrariness.
Berger and Pericchi (1996b) introduced a
new model selection and hypotheses testing
criterion, called the Intrinsic Bayes Factor

which

arbitrariness  of

(IBF) using a data-splitting idea,

would  eliminate the
improper priors. These can be constructed
in very general situation-nested, nonnested,
and even irregular problems-and they seem
to correspond to actual Bayes factors, at
least asymptotically. This approach has
to be quite useful (Berger and
(1996a), Varshavsky (1996) and

Lingham and Sivaganesan (1997)).

shown
Pericchi

In this paper, we use a Bayesian
approach to the comparison of Weibull
distributions using reference priors as
improper priors. We derive intrinsic Bayes
factors to solve our problem. Also, we give
results with real data

some numerical

analysis to illustrate our results.

2. The Intrinsic Bayes Factor
Methodology

In this Section, we firstly introduce the

intrinsic Bayes factor in the general

hypotheses  testing. As a matter of

convenience, we introduce the following

notations.

X=(X,, -, X,): observation with density
f(x| ), where =@ is a finite

dimensional parameter and @ is
parameter space.

®; : parameter space under ith
hypothesis H;,:=1,2,-, q.

F(x1| 6): the density under
H;,:1=12,-,q

7;(8;): the prior distribution under
H;,i=1,2,--,¢q

m;(x): the marginal density of X under
H; when use 7,(8;), i=1,2,--, ¢

p; : the prior probability of H; being
true, =1,2,,q.

7(8;): the improper prior distribution
under H,;,i=1,2,",4q.

mY(x): the marginal density of X under
H; when use 7%(8)),

=1,2,, ¢
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Then 7Y(8;) is usually written as #Y(4,)
o< k;(8;), where h; is a function whose
@space  diverges.
73 (8) = c; hi(8)),

although the normalizing constant ¢; does

integral  over the

Formally, we can write

not exist, but treating it as an unspecified
constant.
The posterior probability that H; is true is

given as

— Dip oyt
P(H;| =(5 5By, M
where B, the Bayes factor of H; to H,,

is defined by

min S (%1 8)n(8)a0,
Bi= = e
mix) [ (x| 6)n(6)d8;

The posterior probabilities in (1) are then
used to select the most plausible hypothesis.
If one were to use some noninformative

priors, then (2) becomes

iz Lo/ 000,
mi () [ =1 6xi0)ds;”

Bli= 3)

Hence, the corresponding Bayes factor,
BY, is indeterminate. One solution to this
indeterminacy problem is to use part of the

data as a training sample. Let x(/) denote
the part of the data to be so used and let

x(— J) be the remainder of the data, such
that

0<mM(x( 1))<o0, i=1,,q. 4)

n(6; | x(1))
are well defined. Now, consider the Bayes
B;(1), for the rest of the data

In view (4), the posteriors

factor,

x(—1), using #(8,;| x(1)) as the priors:

Jo A& (=D 1 6, (D)6, | x( D)

Bi() =
( Jo =D 1 8, =(D)xl(6; 1 x(D)ab;

BY xBY(x(1)) (5)
where B is given by (3) and

m(x( 1))

N o
Bilx(D) == %)y -

(6)

In (5), any arbitrary ratio, c;/c; say, that
multiples B, would be cancelled by the
ratio ¢;/c; forming the multiplicand in
BY(x(1)). Also, while the expression (6)
renders B (/) in terms of the simpler

marginal densities of x( /).

As training samples, arithmetic and
median intrinsic Bayes factor play a
fundamental role in our testing H,, i=
1,--,q, we introduce the following
definitions.

Definition 1. (Berger and Pericchi (1996b))
x(7), will be called
proper if (4) holds and minimal if it is

A training sample
proper and none of its subsets is proper.

Definition 2. (Berger and Pericchi (1996b))
The Arithmetic Intrinsic Bayes factor of H;

to H; is

Bf=BY - L 3 BYx(1)). )



where L is the number of all possible

minimal training samples.

Definition 3. (Berger and Pericchi (1998))
The Median Intrinsic Bayes factor of H;

to H; is
BY=RBY. ME[BY(x(I)], (8)

where ME indicates the median, here to be
taken over all the training sample Bayes
factors.

calculate the

We can also posterior

probability of H; using (1), where B is
replaced by B4 and B from (7) and
(8).

3. Intrinsic Bayes Factor

The Weibull distribution with parameters
@, B is given by

fx | a,®=5 (L) lexp(—(£)%),  ©9)

where x>0, and >0 and B3>0 are
parameters referred to as the scale and
shape parameters of the distribution,
respectively. Comparison of Weibull scale
parameters is of interest mainly when the
shape parameters of the distribution are
equality of Weibull

across different

equal. Also shape

parameters groups of
individuals is an important. Consider two

from Weibull
(01 s /3)1),

respectively. Then the observed

samples of sizes #n;, #ny
distributions  with  parameters

(a’z ’ 82)9
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sample consists of the failure times
%;=(x3,"",%m), where i{=1,2. Thus we

want to test the hypotheses of (i)

H :a=ay, s H, : under

Bi=B=p and (i) H;: pB=p Vs
Hy @ g1 #8;.

a1 ¥ as

3.1 Minimal Training Sample
The goal here is to determine the set of
all possible minimal training sample(MTS)

for the data x; and x, to test Hy:a1=a,
vs. H,: Bi=pB=08 The

priors for H:

a1¥a; when

reference a=ay Vs

H, : a;#+a, are respectively given by

Mad = 55, (10)
ey, a, B = a"ihﬂ' (11)

To derive the marginals with respect to the
reference priors given by (10) and (11), we

first observe that the joint pdf of X; is

given by

il e 8)= (S5 I (207
exp(— ,2“1( iy by,

a;

(12)

Moreover, the joint pdf of (x4, x.),

1<k+I<n;, is given by

Pt i, 8) = (LLy2 2Ly A
N (13)

exp[—((%)ﬁf+<’f7f>‘*">].

In the following lemma, we give the
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marginal densities for any two observations.

Lemma 1. We have the marginal density
my(% 1, %1j, Xop %) under H, h=1,2 as

follows.

m{v(x 1is X 1js X 2ks 29 =T4)A[x ;% 1% 26X 2] _1,
(14)

5 (X 14, % 1y % 9 X 20) = Al X 1% 10 0 0] 71,
(15)

(%12 1% 26X 2) A
(x ﬁ-+xﬁ-+x2ﬂk+x§1)4

where A= fo m,6‘2 dg,

(x 1i% 17X 26X 20 A
(x fi‘i‘xi?j)fz(xlzgk‘f‘xgz)

1<i+j<m; and 1<pk+i<y,.

A2=f0 8 - d and

Since the marginal density of (X, X,
X o, X 5;) is finite for all 1<i#j<n, and
each hypothesis, we

1<k+I/<n; under

conclude that any training sample of size
two is an MTS.

Nextly, we consider the test Hy:8,=p5,
vs. Hy: By#pB5. The reference priors for
H,, h=1,2 are, respectively, given by

a2, B) = 61’111’2.3 , (16)
N, _ 1 1
my(ay, ap, B1, By) = aB wb (17)

In the following lemma, we now derive
the marginals with respect to the reference
priors given by (16) to (17).

Lemma 2. We have the marginal density

N,
My (%1, %17, X ok, xy) under H,, h=1,2 as

follows.

N -1
my (x 1is X 1j» X 2ks xo) = Aslxx 175 26X ol 7,

(18)

N _ 1
mz(xlz’xlprk,xZI)— 2x1ix1j|10g(x1j/x1i)|

1
1
2% ot 21| log (o o1/ 2 00| (19)

(x ;% 1% 26X 20 £
(xE+xD) x5+ x5)?

1<i#j<n; and 1<k=/[<n,.

where A,= fom/a’ dB,

It is clear from the above that the marginal
density of (X, X, X9, X o) is finite for
all 1<s#j<n; and 1<k+I<n, under each
hypothesis, and hence we conclude that any

training sample of size two is an MTS.

3.2 Arithmetic and Median Bayes
Factors

The marginal densities corresponding to the

full data (X, X,) for test H, : a;=a, vs.

H,: a#a, can also be expressed in the

following lemma.

Lemma 3. For the full data, we have the
marginal density mj(x,, x,) under H,, h=

1,2 as follows.

my (%1, %2) = I{ny + n)Cy[ ﬂlxu] I ﬁxZi] -
(20)

my (xy, 23) = T'(n ) () Cyl llnjlxli]_l

[ZIZIXZi]_l, 21)
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where

= fomﬂnl+n2_2[ ﬂlxli] di ﬁxZi] A
[ Z‘x L+ ﬁlei] — g,

G = j;wﬂnl+n2_3[ ﬂxu] d ﬁlxzﬂ g

[ Z‘.lx A Z‘x 51 " ™dp.

Nextly the marginal densities correspond-
(X,, X;) for test

H,: B#8; can also be

ing to the full data
D Bi=8y Vs

expressed in the following lemma.

Lemma 4. For the full data, we have the
marginal density mp(x,, ;) under H,, h=

1,2 as follows.

mf'(xl, 12)= F(ﬂ])F(ﬂ2)C2[ ﬂlx li] -1

[ LI‘xZi] _1, . (22)

my (%1, %)= I'(n))I'(n3)D, Hxl,]

[ LLxZi] —1, (23)

where

A8 | ELIS | PP
[;lxh] "‘[sz, ~"dB,

D,= f Bnl 2[ ﬁLxli] Bl[ gxlﬁ:] _nldﬁl *
an2_2[ llj‘.‘x il IZ‘.lx 2l dBs .

To test H,: ay=ay vS. H;: a1Fay, we

get the -following theorem from Lemmas 1
and 3.
Theorem 1. (i) The Bayes factor using the
full data is given by

v CI'(n)I(ny)
BZI— CIF(nl-I- ng) . (24)
(i) The Bayes factor using the x(/)=
(xlz':xlj,ka:xZI) is given by
N A
Bla(x(1)= F(4)j4—2— . (25)
From the Theorem 1, the arithmetic

intrinsic  Bayes factor B#4! to test

Hy : ay=ay vs. Hy: a;#a, is given by

By'=By - ZBH(x(1). (26)

1
(3)(2)
2/\2
Nextly we get the following theorem

from Lemmas 2 and 4 to test H;: Bi=45,

Vs. H2: BI:’:BZ

Theorem 2. (i) The Bayes factor using the
full data is given by

D
B§§=7§. 27)

(i) The Bayes factor using the x(/)=

(x1i, % 1j, X 2, X ) 15 given by

BY(x( D)=4A;1log(x 1;/x 1)1 | log(x o1/ x 201
(28)

From the Theorem 2, we can derive the
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arithmetic intrinsic Bayes factor B# to test
H,: Bi=28y vs. H,: B,#8, as above (26).

Next we use the another intrinsic Bayes

involved 20 specimens of each type, an the
failure voltages in kilovolts per millimeter

were

called

median intrinsic

factor ]
Type I Insulation

32.0, 35.4, 36.2, 39.8, 41.2, 43.3, 45.5, 46.0, 46.2, 46.4,
46.5, 46.8, 47.3, 47.3, 47.6, 49.2, 50.4, 50.9, 52.4, 56.3

Bayes factor

Type II Insulation

39.4, 45.3, 49.2, 49.4, 51.3, 52.0, 53.2, 53.2, 54.9, 55.5,
57.1, 57.2, 57.5, 59.2, 61.0, 62.4, 63.8, 64.3, 67.3, 67.7

(Berger and
(1998)). They
median intrinsic Bayes factor seems to be a

Pericchi showed that the

simple and very generally applicable
intrinsic Bayes factor, which works well for
nested or nonnested models, and even for
small or moderate sample sizes.

From the Definition 3, Lemma 1, Lemma
3 and Theorem 1, we derive the median
factors to test

Bayes H:o=a Vs,

H, : a\%a, as follow:

BY=BY,- ME[BY(x( )], (30)

And also from the Definition 3, Lemma
2, Lemma 4 and Theorem 2, we can derive
the median factors to  test

H,: Bi=P8; vs. H,: B#p5, as above.

Bayes

4. Illustrative Examples

In this section, we present some examples
to illustrate for our findings regarding the

test () H,: a;=ay vs. Hy: a;#a, and

@) Hy: fi=258 vs. Hy: Bi#5,.

Example 1 : The data given below are the
voltage levels at which failures occurred in
two types of electrical cable insulation
when specimens were subjected to an
increasing voltage stress in a laboratory
experiment (Lawless (1982)). The test

For the type 1 insulation, the maximum

likelihood estimates of

2,=47.781 and B,=19.383,

And for type Il insulation the maximum

@, and B is

respectively.

likelihood estimate of @, and g, are

2,="59.125 and B,=9.141, respectively. In
table 1 and 2, we provide the P-value,
Bayes factors and posterior probabilities for
the test H,: ay=ay, vs. H,: a;+a, and
Hy: B=P8; vs. Hy: p#pB, for the failure
data. For the table 1,
computed by likelihood
A=—2log L(a,, &y, B) +2logL(ay, @3, Bi. By)

@y, @, B, B, are the unrestricted

voltages P-value

ratio  statistic
where
MLE's of the parameters, and o7, 2, and
Bi= ;=B are the MLE's under H,. And
2, P-value
likelihood ratio statistic A=-—2logl(a", ",
8,8 +2logL(ay, a3, B. B) a,p
MLE's of @a;=ay=a and

for the table computed by

where
are the

Bi=PB;=p under H;, and @a;,a, and

B= B,= B are the MLE's under H,. The

distribution of the above statistics, A, s

approximately x(1) under H, in large

samples, respectively. From these tables,

there is strong evidence for H; and H, in

terms of the posterior probability and

P-value, respectively.
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Table 1 : P-value, Bayes factors and
P(H, | x) for testing H;: f=48 Vs
H, : B,#+8, under the Voltage Data

P—Value By B#  pAH | x) PYH | x

0.1697 0.1252 0.1844 0.8887 0.8443

Table 2 : P-value, Bayes factors and
P(H, | x) for testing H;: ay=ay Vs

H, : a;#a, under the Voltage Data

the generalized likelihood ratio test could
be misleading, even when the sample size
are large, (Berger, Brown and Wolpert,
1994). Now the Bayes factors are computed
based on entire observations so that they

give accurate interpretations.

Table 3 : P-value, Bayes factors and
P(H,| x) for testing H,: Bi=28; Vs
H, : B;#8, under the Voltage Breakdown
Data

P— Value B B pMH |2 PYH | %

P—Value  BY BY¥  pAH | x) PYM(H |2

0.0000 14057.7413 5971.6329 0.0001 0.0002

0.0401 1.6536 1.7620 0.3768 0.3621

Example 2 : The following data are time
to breakdown of a type of electrical
insulating fluid subject to a constant voltage
stress (Nelson (1970)).

From the above examples, the arithmetic
and median intrinsic Bayes factors are
computed based on entire observations so
that they give accurate interpretations and

fairly steady answers.

0.27, 0.40, 0.69, 0.79, 2.75, 3.91, 9.88, 13.95,
32 KV

15.93, 27.80, 5$3.24, 82.85, 89.29, 100.58, 215.10

38 KV | 0.47, 0.73, 1.40, 0.74, 0.39, 1.13, 0.09, 2.38

5. Concluding Remark

For the 32KV, the maximum likelihood

estimate of @, and f, is 2;=28.94 and

B1=0.561, respectively. And for 38KV, the

maximum likelihood estimate of ¢, and

B is  a=1.0001 and  5,=1.362,

respectively. In table 3, we provide the
P-value, Bayes factors and posterior

probabilities for the test H,: =8, vs.
H,: B#8, for the failures times for ball

bearing data. From this table, there is
evidence for H, in terms of the posterior
probability and P-value. But in terms of the

P-value, H; can accept for the significance

level. @. is 0.01. It has been noticed that

We have suggested a Bayesian hypotheses
testing criterion for the comparison of
Weibull distributions via the intrinsic Bayes
factor. We have derived the arithmetic and
median intrinsic Bayes factors, and used
these results to analyze real data sets. For
the comparison of the classical test, P-values
are computed by likelihood ratio statistic.

As we see from the numerical results, the
arithmetic and median intrinsic  Bayes
factors are computed based on entire
observations so that they give accurate
interpretations and fairly steady answers.

In general, there has been a considerable
amount of literature on the controversy
between a P-value and a Bayes factor. It
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has been noticed that a P-value does not
agree with the posterior probability that the
null hypothesis is correct. Delampady and
Berger (1990) have shown that the lower
bounds of posterior probabilities in favor of
null hypotheses are much larger than the
corresponding P-values.

IBF methodology can be easily applied to
nonnested as well as to nested problems.
They can also be applied in general when
the samples come from any distribution.

The the

censored data to the Weibull lifetime model

study pertaining to applying

is left as a future study of interest.
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