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HEMICOMPACTNESS AND HEMICONNECTEDNESS
OF HYPERSPACES

B. S. Baik, K. Hur, S. W. LEE AnND C. J. RHEE

ABSTRACT. We prove the following: (1) For a Hausdorff space X,
the hyperspace K(X) of compact subsets of X is hemicompact if and
only if X is hemicompact. (2) For a regular space X, the hyperspace
Ck(X) of subcontinua of X is hemicompact (hemiconnected) if and
only if X is hemicompact (hemiconnected). (3) For a locally compact
Hausdorff space X, each open set in X is hemicompact if and only
if each basic open set in the hyperspace K(X) is hemicompact. (4)
For a connected, locally connected, locally compact Hausdorff space
X, K(X) is hemiconnected if and only if X is hemiconnected.

Introduction

Let X be a Hausdorff space. Denote 2% the space of all nonempty
closed subsets of X endowed with the Vietoris topology and for any
subset A of X, let 24 = {E € 2*X : E C A}. Let K(X) = {E €
2% . E is compact}, F,(X) = {E € 2¥ : E has at most n elements},
Ck(X) = {F € 2¥ : E compact and connected}, and C(X) = {E € 2% :
E is connected} with the subspace topology inherited from the topology
of 2% and for any subset 4 of X, 24 = {F € 2X : E c A}.

The aim of this paper is to prove the intrinsic hemicompact (hemi-
connected) relation between the space X and its hyperspaces K(X) and
Ck(X).

Received November 23, 1998.

1991 Mathematics Subject Classification: Primary 54B20, 54B15.

Key words and phrases: continua, hemicompactness, hemiconnectedness, hyper-
space, local compactness, local connectedness.

This research was supported by International Joint Research Fund of Won Kwang
University.



B. S. Baik, K. Hur, S. W. Lee and C. J. Rhee

For notational purpose, small létters will denote elements of X, capi-
tal letters will denote subsets of X and elements of 2%, and script letters
will denote subsets of 2X. If B ¢ 2X, UB = U{A: A€ B}. If A C X,
A, Int(A), Bd(A) will denote the closure, interior, boundary of A in X
respectively.

1. Preliminaries

Let X be a Hausdorff space. For a collection {4y, -+, A,} of subsets
of X, let (A}, ,A) ={E€2X . ENA; #0 for each i=1,---,n and
E c U%,A;}. The collection of all sets of the form (Uy,---,U,) with
Ui, ,U, open in X, is a base for the finite (Vietoris) topology T, for
2X. When we restrict T, on each of C(X), K(X), Fn(X), and Cx(X),
then each one of these spaces is also called hyperspaces of X. For each
n, Fn(X) is closed subspace of 2% and in particular F;(X) and X are
homeomorphic.

It is known that:

LemMA 1.1 [4]. (a) (Uy, -, U) = (Ur, -+, Uy).
(b) (Vi,--+, Vi) C (Uy,---,Uy) if and only if UT,V; C UL, U, and for
each U; there is a Vj such that V; C U;.
(c) Let X be a space. Then for each B € K(K(X)), UB € K(X).
(d) If B is a connected subset of 2X which also contains at least one
connected element, then UB is connected in X.
(e) X is compact if and only if 2% is compact.
(f) The map f : [2X|* — 2% defined by f(Ay,---,An) = U A; is con-
tinuous.

LemMA 1.2. [3] If X is a compact Hausdorff space, then 2% and
C(X) are both arcwise connected compact Hausdorff spaces.

LEMMA 1.3. IfU{ is an open set in the subspace K(X), then UU is
open in X.

Proof. Without loss of generality, let U = (Uy,---,Up,)N K(X) be
an open set in K(X) and let U = UU. Let z € U. Then z € U;
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for some i. Choose z; € U; for each j # ¢. For each y € Uj, let
Ey = {.’El,"' y Tic1, Y, Tix1,yt - ,.’L‘n}‘ Then Ey [ (U],"' ,Un)ﬂ ’C(X)
and thus y € E, CU. Hence U; C U. a

LEMMA 1.4. Suppose X is a connected, locally connected, and locally
compact Hausdorff space. Then for each compact subset K of X, there
exists a subcontinuum C of X which contains K.

Proof. Let {Uy,---,U,} be an open cover of K such that each U;
is connected and whose closure is compact. For each i, pick a point
a; € U;. Fori>1,let Uy = {Viy,---,V;;.} be a simple chain from a, to
a;, where each V;;, is connected open set whose closure is compact. Then

M = (Ur,U) U (Ui:n’i’f:nkvilij). Then M is compact and connected. O

i=2,5;=1

PROPOSITION 1.5. X is locally compact Hausdorff if and only if K(X)
is locally compact Hausdorff.

Proof. Suppose X is locally compact Hausdorff. Then X is regular.
Hence 2% is Hausdorff [4, 4.9.3] so that K(X) is Hausdorff.

Let E € K(X). Since X is locally compact, there exists an open set U
containing E such that U is compact. Then E € (U)N K(X). For each
F € (U), F is compact. Thus (U) C K(X). Also {U) = (U) = 2V. So
(U) is compact by Lemma 1.1(e). Hence K(X) is locally compact at E.

Conversely, suppose that K(X) is locally compact Hausdorff. Let
z € X. Let U be a neighborhood of {z} in K(X) such that If is compact.
Then U = Ul is open in X by Lemma 1.3, and U € K(K(X)) implies
that U is compact by Lemma 1.1(c). Hence U ¢ U C Ul.

Since F1(X) = {{z} : z € X} is Hausdorff and homeomorphic to X,
X is Hausdorfl. O

PROPOSITION 1.6. If X is a normal space, then C(X) is closed in 2%.

Proof. Suppose E € 2% is a limit point of C(X) such that E € 2% \
C(X). Let E € (Uy,---,U,) and U = U ,U;. Since E is disconnected
and closed, E is the union of two nonempty disjoint closed sets E, and E,
in X. Since X is normal, there exist two disjoint nonempty open sets W,
and W5 in X containing E; and FEj respectively such that Wi UW, C U.
Since ENU; = (EyUE,)NU; # ¢ foreachi =1,.-- ,n, let {U},--- , UL}
be the collection of all U; € {Uy,--- ,U,} such that U; N E; # 0, and
{U2,-- ,Uii} be the collection of all U; € {Uy,--- ,Uy,} such that U; N

11’.
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Ey # 0. Now let V! = WinU. for j = 1,--- k, and V2 = Wo N U?
for ! =1,---,p. Then By C U}_,V]! = V' and E, C U}_ |V = V? and
VINV? = 0. It is easy to see that E € (V{l,--- , VL, V2, V2 C
(Ur,--+,Uy). Since E is a limit point of C(X), there exists an element
C € C(X) such that C € (V}},--- , VL, V2 .. ,V2). This would mean
that C C V!UV? and CNV? # § for each i = 1,2 which contradicts the
connectedness of C. So C(X) is closed in 2. O

PROPOSITION 1.7. X is compact Hausdorff if and only if C(X) is
compact Hausdorff.

Proof. Suppose X is compact Hausdorff. Then clearly C(X) is com-
pact Hausdorff by Lemma, 1.2.

Conversely, suppose C(X) is compact Hausdorff. Then the closed sub-
space F1(X) = {{z} : ¢ € X} of C(X) is compact Hausdorff. Since X
and F1(X) are homeomorphic, X is compact Hausdorff. O

2. Hemicompactness and Hemiconnectedness of Hyperspaces

DEFINITION [1]. A subset E of a Hausdorff space X is called hemi-
compact if there exists a sequence {K,}2, of compact subsets of E such
that each compact subset of F is contained in some K,,.

LEMMA. 2.1. IfY is a closed subset of a hemicompact Hausdorff
space X, then Y is also hemicompact.

Proof. Let {K,}%, be a sequence of compact subsets of X such that
each compact subset of X is contained in some K,,. Now let L, = YNK,,
for each n =1,2,---. Then {L,}2, is a sequence of compact subsets of
Y. Let L be a compact subset of Y. Then it is a compact subset of X
so that there is a K, such that L ¢ K, Hence L C YN K, = L,. O

PROPOSITION 2.2. Let X be a Hausdorff space. Then X is hemicom-
pact if and only if K(X) is hemicompact.

Proof. Suppose X is hemicompact. Let {K,}%, be a sequence of
compact subsets of X such that for each compact subset K of X, K ¢ K,
for some n. Let K, = 2% for each n = 1,2,---. Then K, C K(X)
for each n = 1,2,--- and is compact by Lemma 1.1(e). So {K,}%,
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is a sequence of compact subsets of K(X). Now let K be a compact
subset of K(X). Then UK is compact by Lemma 1.1(c). Thus there is a
K, € {K,}2, such that UK C K,,. Hence K C K,,.

Suppose that K(X) is hemicompact. Let {K,}2, be a sequence of
compact subsets of IC(X) such that each compact subset of K(X) is
contained in some X,. Let K, = UK, for each n = 1,2,.--. Then by
Lemma 1.1(c) each K, is a compact subset of X. Let K be a compact
subset of X. Then 2X is compact by Lemma 1.1(e). Also it is a compact
subset of K(X). Thus there is a K,, which contains 2X. Hence K =
U2k c UK, = K. d

PROPOSITION 2.3. Let X be a Hausdorff space. Then X is hemicom-
pact if and only if F,(X) is hemicompact.

Proof. Suppose X is hemicompact. Then K(X) is hemicompact by
Proposition 2.2. Since F,(X) is a closed subspace of K(X), Fn(X) is
hemicompact by Lemma 2.1.

Suppose F,(X) is hemicompact. Let {L£,}32; be a sequence of com-
pact subsets of F,(X) such that each compact subset of F,(X) is con-
tained in some L,,. Let L, = UL, for each n = 1,2,---. Then each L,
is compact by Lemma 1.1(c). Let L be a compact subset of X. Then
2L is compact. Hence S = 2L' N F,(X) is compact subset of F,(X).
Let £y, be an element of the sequence {£,}32, such that S C £;. Then
L=US cuL; = L. O

COROLLARY 2.4. If X is a hemicompact first countable Hausdorff
space, then K(X) is locally compact Hausdorff.

Any hemicompact first countable Hausdorff space is locally compact
[1]. So by Proposition 1.5 the conclusion follows.

PROPOSITION 2.5. Let X be a regular space. Then X is hemicompact
if and only if Cx(X) is hemicompact.

Proof. Suppose X is hemicompact, and let {K,}%2, be a sequence of
compact subsets of X such that each compact subset of X is contained
in some K,,. Let C{K,) = {F € Cx(X) : E C K,} for each n. Then
each C(K,) is compact by Proposition 1.7 and is contained in Ck(X).
Thus {C(K,)}®, is a sequence of compact subsets of Cx(X). Let K
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be a compact subset of Cx(X). Since K C K(X), K = UK is compact
subset of X by Lemma 1.1(c). Hence there is an element K, such that
K C K,,. Therefore K C C(K,,).

Conversely, suppose that Cx(X) is hemicompact, and let {K,}2, be a
sequence of compact subsets of C(X) such that each compact subset of
Ck(X) is contained in some K,,. We note that each K, is also a compact
subset of 2%, and is contained in X(X). Hence each K, = UK, is a
compact subset of X by Lemma 1.1(c), and thus {K,}, is a sequence
of compact subsets of X. Let K be a compact subset of X. Then C(K)
is compact subset of Cx(X). Hence there is an element K, such that
C(K) C Ky,. Let K* = {{z} : 2 € K}. Then K = UK* ¢ UC(K) C
UK, = K. O

LEMMA 2.6. Let X be a locally compact Hausdorff space. Let
(U, -+ ,U,) be a basic open set in 2X and K € (Uy,---,U,) N K(X).
Then there exists a finite set Wx = {V4,--- ,V,} of open sets in X sat-
isfying the following conditions:

(1) For each i = 1,---,p, V; is compact and V; C U; for each
j=1,---,n.

(2) For eachj = 1,--- ,n, U; D V; for some k =1,--- ,p.

B)KeVgk= MW, ,VpNK(X) C (U, ,U,) N K(X).

Prcof. For each x € K NUj, let V; be an open neighborhood of z in
X such that V, is compact and V, C U;. The collection of all such V;
covers the compact set K. Let {V;,,---,V,,.} be a finite subcollection
which covers K. Now for each ¢ =1,--- ,n, let y; € KNU, and V,, be
an open neighborhood of y; such that V,, C U;. Consider the collection
Wk = {Vy, Vi, Var, -+, Vi, } of open sets in X. Then Wy satisfies
t..e conditions (1), (2) and (3). O

PROPOSITION 2.7. Let X be a locally compact Hausdorff space. Then
each nonempty open set in X is hemicompact if and only if each basic
open set in K(X) is hemicompact.

Proof. Suppose each nonempty open set in X is hemicompact. Let
(Uyy -+, Un)N K(X) be a basic open set in K(X). Since each U; is hemi-
compact, let M; = {KJ’};”;I be a sequence of compact subsets of U;
satisfying the condition that if K is a compact subset of U; then it is
contained in some K},
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Let M = M; x --- x M,. Then M is countable. For each B =
(KY,--- K™ € M, let f:25" x ... times2K" — K(X) be the restric-
tion of the map defined in Lemma 1.1 (f). Then each f(B) is a compact
subset of (Uy,---,U,)N K(X), and K = {f(B) : B € M} is a countable
collection of compact subsets of (Uy,--- ,U,)N K(X).

Now suppose N is a compact subset of (Uy,--- ,U,)N K(X). For each
K eN,let W ={W;,---,V,} and Vg = (V4,- -+, V)N K(X) satisfying
the conditions (1), (2) and (3) in Lemma 2.6. Let U be the collection of
all Vk, K € N. Then U covers the compact set N. Let {Vg,,---,Vk,}
be a finite subcollection of & which covers N. For each ¢, let Wk, be the
finite set of open sets which defines Vg, and let W = Ul_;W,. For each
i,let S;={V:VeWandV CU;},j=1,---,n. Then, for each j =
1,--- ,n, there is an element K’ € M; such that US; = U{D; D € S;}
C K’. Then B = (K,--- ,K™) € M, and thus f(B) € K. We show
that N' C f(B). Let K € N. Then K C U}_;(US;) C Ul K. Let
A;j=KNK’ foreachj=1,---,n. Then (A, -+, 4A,) € 2K i L. x 2K7
so that K = U?_;A; € f(B). This shows that /' C f(B). And hence
(U, - -+ ,Up)N K(X) is hemicompact.

Suppose each basic open set in X(X) is hemicompact. Let V be a
nonempty open set in X. Then (V)N K(X) is a basic open set in X(X).
Let {K,}2 , be an increasing sequence of compact subsets of (V)N K(X)
such that each compact subset of (V)N K(X) is contained in some /C,,.
Now let K, = UK, for each n. Then by Lemma 1.1 (c), each K, is
compact. So {K,}3, is an increasing sequence of compact subsets of
V. Let K be any compact subset of V. Then 2¥ is a compact subset
of (V)N K(X). Hence there exists K,, in the sequence {K,}22; such
that 2 ¢ K,,. Thus K = U2X ¢ UK,, = K,,. This shows that V is
hemicompact. d

DEFINITION 2. A subset E of a Hausdorff space X is called hemi-
connected if there exists an increasing sequence {C,}22; of continua in E
such that each continuum in F is contained in some C,,.

It is clear that a hemiconnected space is a semi-continuum and the
countable union of subcontinua, where a space X is called a semi-continuum
if every pair of points in X can be joint by a subcontinuum of X [2].
The class of hemiconnected spaces includes compact connected Haus-
dorff spaces as well as Euclidean spaces.
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PROPOSITION 2.8. Let X be a regular space. Then X is hemicon-
nected if and only if Cx(X) is regular hemiconnected.

Proof. Suppose X is a regular hemiconnected space. Let {C,}32, be a
sequence of subcontinua of X such that each subcontinuum of X is con-
tained in some Cj,. Then Ck(C,) is a subcontinuum lying in Cx(X) by
Lemma 1.2 and thus {Cx(C,)}32,; a sequence of subcontinua of Ck(X).
Let X be a subcontinuum of Ck(X). Then K = UK is a subcontinuum
of X by Lemma 1.1(c) and (d). Let C,, be an element of {C,}52, which
contains K. Then K C Ck(C,,). This proves that Cx(X) is hemicon-
nected. Since X is regular, (X)) is regular by [4, 4.9.10], so its subspace
Ck(X) is regular.

Suppose Ck(X) is a regular hemiconnected space. Let {K,}3, be
a sequence of subcontinua of Cx(X) such that each subcontinuum of
Ck(X) is contained in some K. Let C, = UK, for each n. Then
{C,}, is a sequence of subcontinua of X. Let D be a subcontinuum of
X. Then Ckg(D) is a continuum lying in Ck(X) by Lemma 1.2. So there
is a K, which contains Ck (D). Hence D C UCk(D) C UK, = Cy,. This
proves that Ci(X) is hemiconnected.

Since Ck(X) is regular, its subspace F;(X) is regular. So X is regu-
lar. O

PrROPOSITION 2.9. Let X be a connected, locally connected, and
locally compact Hausdorff space. Then X is hemiconnected if and only
if K(X) is hemiconnected.

Proof. Suppose X is hemiconnected. Let {C,}2, be a sequence of
subcontinua of X such that each subcontinuum of X is contained in
some C,,. Then, for each n, 2¢ is a subcontinuum in X(X) and thus
{262}% | is a sequence of subcontinua of X(X). Let K be a subcontinuum
of K(X). Then, since X is connected, locally connected, and locally
compact Hausdorff and UK is a compact subset of X, by Lemma 1.4
there is a subcontinuum M of X which contains UK. So let C,, be an
element of the sequence {C,}%, such that M C C),. Then it is clear
that K c 2 ¢ 2% Hence K(X) is hemiconnected.

Suppose that I(X) is hemiconnected. Let {K,}5°, be a sequence of
subcontinua of (X)) such that each subcontinuum of (X)) is contained
in some K. Inductively, we define a sequence { M}, of subcontinua of
X as follows: Let M; be a subcontinuum of X containing UK;. Suppose
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that, for k£ > 1, M, has been defined. Let M, be a subcontinuum of X
containing the compact set M;U(UK ;1) which is provided by Lemma 1.4.
Let K be a subcontinuum of X. Then 2% is a subcontinuum of X(X).
Thus there exists an element K, of the sequence {K,}3; such that
2K ¢ K,,. Hence K C UK,, C M,,. Therefore X is hemiconnected. [
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