Bull. Korean Math. Soc. 37 (2000), No. 1, pp. 121-125

MATCHINGS IN LINE GRAPHS
YUNSUN NaM

ABSTRACT. In this paper, we obtain an algorithm for finding a max-
imum matching in the line graph L(G) of a graph G. The complexity
of our algorithm is O(|E|), where E is the edge set of G (|E| is equal
to the number of vertices in L(G)).

1. Introduction

Let G = (V, E) be a graph. The line graph L(G) of G is the graph
whose vertex set can be put in one-to-one correspondence with the edge
set of G such that two vertices of L(G) are adjacent if and only if the cor-
responding edges of G are adjacent. A matching is a spanning subgraph
M of G such that the degree of each vertex in M is less than or equal
to one. A mazimum matching is a matching with maximum number of
edges. In this paper, we present an algorithm for finding a maximum
matching in a line graph L(G), which runs in O(|E|). Since the edge set
of G has one-to-one correspondence with the vertex set of L(G), the algo-
rithm runs in linear time in the number of vertices of L(G). If we apply
Micali and Vazirani’s algorithm to L(G), then it takes O(+/|E|-m) to ob-
tain a maximum matching, where m is the number of edges of L(G). Our
algorithm is relatively fast. Throughout this paper, we assume that G is
connected. If G is not connected, we can obtain a maximum matching
of G by applying our algorithm to each component of G.

Our algorithm deals with G, not with L(G). We use the idea of
Chartrand, et al. [1]. They show that finding a maximum matching
in L(G) is equivalent to decomposing G into even trails and possibly one

Received May 31, 1998.

1991 Mathematics Subject Classification: 05C70, 68R10.

Key words and phrases: matching, line graph.

The author wishes to acknowledge the financial support of the Korea Research
Foundation made in the program year of 1998.

Yunsun Nam

odd trail. Decompose each trail into the complete bipartite graphs K5 ;’s.
An even trail is decomposed into K ;’s, but an odd trail is decomposed
into K ’s and one edge. Thus G is decomposed into K5 ;’s and possibly
one edge. Let M be the set of edges in L(G) joining the pair of vertices
corresponding to the edges in each Ky;. The set M is a matching in
L(G) of size [@J, and thus it is a maximum matching (Note that |E|
is equal to the number of vertices of L(G)). We obtain an algorithm for
decomposing G into even trails and possibly one odd trail, which runs in
O(|E]).

In Section 2, we present our algorithm for decomposing G into even
trails and possibly one odd trail. In Section 3, we prove the validity of
the algorithm and compute its complexity.

2. Algorithm

In this section, we present an algorithm for decomposing G into even
trails and possibly one odd trail. The algorithm consists of two steps.
The first step decomposes G into trails. The second step pairs up odd
trails and transforms them into even trails.

Algorithm

Step 1. [Decompose G into trails.|

1.1 Let n < 0, and E « E(G).

1.2 Let n < n + 1, a queue T, + @, and &, + 0.

1.3 If E = 0, then go to Step 2. Otherwise, select one vertex v which
has at least one incident edge in E and add v to T,.

1.4 If there is an edge € in F incident upon v, then let w be the other
end of e; add w to Ty; set k, ¢+ k, + 1, E « E\ {e}, and v « w;
go to the beginning of this Step 1.4. Otherwise, go to Step 1.2.

Step 2. [Pair up odd trails and transform them into even trails.]

2.1 If none of k; isodd, STOP. Fori = 1,... ,n, if k; is odd, then shrink
T; into a pseudovertex. (If k; and k; are odd and T; N T} # @, then
add an edge between pseudoverices of T; and T;.) Let G’ be the
resulting graph, and let E' + F(G'). Choose an arbitrary vertex
r.

122

Matchings in line graphs

2.2 [Tree growing from 7.

(1) For each vertex v # 7, let label(v) + 0 and p(v) < 0. Add r
to the list of unscanned vertices; let label(r) < 1 and £ « 1.

(2) If the list of unscanned vertices is empty, then go to Step 2.3.
Otherwise, select one vertex v from the list.

(3) For each (v,w) € F', let E' « E'\ {(v,w)}; if label(w) =
then add w to the list of unscanned vertices and let p(w)
label(w) + label(v) + 1.

(4) If £ < label(v), let £ < label(v). Consider v to be scanned and
delete v from the list of unscanned vertices. Go to (2).

2.3 For each vertex v with label(v) = ¢, if v has more than one pseu-
dovertex among its children and itself then pair them up; delete
from the tree the edges in the paths between the pairs of pseu-
dovertices; for each of the pairs (T3, T;), EVEN(T;, Tj).

24 If £#1, then let £+ ¢ — 1 and go to Step 2.3. Otherwise STOP.

0,
v,

Subroutine EVEN(T}, T})

Substep 1. Let B, ; = Tijv;...v,_;T; be the path in the tree between
T; and T;. Let vg (resp. vn) be the real vertex in T; (resp. T;) which is
adjacent to v; (resp. vp-1). (Note that v; (: =1,2,...,n — 1) is a real
vertex.)
Substep 2. For k£ = 0 to n — 1, do the following:
(1) Find a trail T containing (vg, vg+1)-
(2) Divide T; into two subtrails Tim and Ti(z) such that Ti(l) is from the
beginning of T; to v and Ti(2) is from vy to the end of T;.
(3) Do (2) replacing T; by T.
(4) If the lengths of T and T have the same parity, then let T' «
TOUT® and T; « TP UT®. Otherwise T + TW U T? and
T, « T UT®,
Substep 3. Divide each of T; and Tj into two subtrails in the same way
as in Step 2. If the lengths of Ti(l) and Tj(l) have the same parity, then
let Ty TV UTY and Tj « T2 UT,Y. Otherwise, let T; + TV UT
and T; « TP UT{V. Return.

We illustrate the algorithm using the graph G in Figure 1. After

123

Yunsun Nam

(2)

®

Fi1GURE 1. Graphs G and G’

Step 1, several different trail decompositions of G can be obtained. Let’s
assume that the following trail decomposition is obtained: T = [1,2,3, 8,
4,2), T, =(1,4,3,7,1,5,4), T3 = [5,7,4] and T} = [6,7]. Then T, and Ty
are odd trails. We obtain G’ in Figure 1 after Step 2.1 (shrinking 7} and
T, into pseudovertices). If we choose 7 = 5, then p(5) = 0, label(5) = 1,
p(Th) = p(Ty) = 5 and label(Ty) = label(Ty) = 2 after Step 2.2. In
Step 2.3, EVEN(Ty, Ty) is called. Then P4 = [T1,5,T7). Vertex 5 is
adjacent to vertices 1 and 4 in T}, and to vertex 7 in T,. If vg = 11is
chosen, then we obtain the following trail decompostion at the end of
algorithm: 71 = [4,5,7], T> = [1,4,3,7,1], Tz = [5,1,2,3,8,4, 2] and
T4 = [6, 7, 4]

3. Validity and Efficiency of the Algorithm

In this section, we prove the validity of the algorithm given in Sec-
tion 2 and compute its complexity. Lemma 1 shows the subroutine EVEN
transforms two odd trails 7; and 7 into even trails. Using Lemma 1, the
validity of the algorithm is proved (Theorem 2).

LEMMA 1. The subroutine EVEN(T;, T;) transforms two odd trails T;
and T} into even tails.

124

Matchings in line graphs

Proof. After performing Substep 2, T has even length and T; has odd
length, and the distance between T; and T} is decreased by one. Thus the
distance between 7; and Tj is 0 after performing Substep 2 n times, where
n is the distance between 1; and T} at the beginning of the subroutine.
After performing Substep 3, both T; and T; have even lengths. O

Now we prove the validity of our algorithm by using the above lemma.

THEOREM 2. At the end of the algorithm given in Section 2, G is
decomposed into trails such that at most one of them has odd length.

Proof. At the end of Step 1, G is decomposed into trails. Now we
have to show that at most one trail is of odd length at the end of the
algorithm. Assume that there is more than one trail of odd length. Let
T; and T; be two trails remaining odd until the end of the algorithm.
When the nearest common ancestor of T; and T is scanned in Step 2.3,
T; and T; must be paired up and sent to the subroutine EVEN(T}, T}).
This completes the proof. O

Now we analyze the efficiency of the algorithm.

THEOREM 3. The complexity of the algorithm given in Section 2 is
O(|E)).

Proof. Step 1 takes O(]E|) since it scan each edge exactly once. Since
the number of trails of odd length is less than or equal to |E|, Step 2.1
takes O(|E|). In Step 2.2, tree growing takes O(|F|). For each pair
(T3, Tj), the subroutine EVEN(T;, T}) takes O(n) where n is the distance
between T; and Tj in the tree. Since the paths between all the pairs
(T, T;) which are paired up in Step 2.3 are edge-disjoint, Step 2.3 takes
O(IE)). O

References

[1] G. Chartrand, A. D. Polimeni and M. J. Stewart, The ezistence of 1-factors in
line graphs, squares and total graphs, Indag. Math. 35 (1973) 228-232.

[2] S. Micali and V. Vazirani, An O(\/[V] - |E|) algorithm for finding a mazimum
matching in general graphs, in Proc. 21st Annual IEEE Symposium on Founda-
tions of Computer Science (1980) 17-27.

MATHEMATICS DEPARTMENT, EWHA WOMANS UNIVERSITY, SEOUL 120-750, KOREA
E-mail: namy@math.ewha.ac.kr

125

