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DEPTH OF TOR

SANGKI CHOI

ABsTRACT. Using spectral sequences we calculate the highest non-
vanishing index of Tor for modules of finite projective dimension.
The result is applied to compute the depth of the highest nonvan-
ishing Tor. This is one of the cases when a problem of Auslander is
positive.

1. Introduction

Throughout this paper, every ring is assumed to be commutative and
noetherian with identity. For an R-module M, the projective dimension
of M is written as pdM.

The purpose of this paper is to investigate depth of Tor. Especially,
the depth of the highest nonvanishing Tor. From now on we let

s :=sup{s | Tor;(M, N) # 0}.

In his paper [1], Auslander has initiated the computation of depth
of Tor and suggested the following problem.

PROBLEM 1.1. Let (R, m) be a local ring and M, N be finite nonzero
R-modules. Suppose that M is of finite projective dimension. Is it true
that

pdM — depthN = j — depth(Torf(M, N))

for some ;7

Regarding the highest nonvanishing Tor, the problem was partially
answered.
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THEOREM 1.2. [1, Theorem 1.2] Let M and N be nonzero finite
modules over a local ring R such that pdM < co. If either depth(TorZ
(M,N)) <1ors=0, then

s = pdM — depthN + depth(Tor®(M, N)).

I'irst we study the highest ronvanishing Tor for modules of finite
projective dimension. One of our main result (Theorem 2.4) generalizes
a formula due to Serre (Theorem 1.3). The result is applied to compute
the depth of the highest nonvanishing Tor. This is one of the cases when
Problem 1.1 is positive.

THEOREM 1.3. [5, V. Theorem 4] Let (R, m) be a regular local ring
and M and N be finitely generated nonzero R-modules with [([M®N) <
co. Then

s = pdM + pdN — dim R.

2. Nonvanishing of Tor

In this section we generalize Theorem 1.3 for any local ring. Spectral
sequences of double(triple) complexes are main tools of computation.

DEFINITION 2.1. Let L, M and N be R-modules, P., F. and G. be
projective resolutions of L, M and N respectively. Define

Torf(L.M,N) := H{(P.® F.® G.).

Since a projective module is a direct summand of a free module, we
can formulate the following lemma.

LEmMA 2.2. IfC. is a complex and P is a projective, then H;(P ®
C)=P®H;C.).

Applying Lemma 2.2 to compute Tor of the double complexes in
Definition 2.1, we obtain the following spectral sequence.

THEOREM 2.3. Torf(L, Torf(M,N)) = TorZ, (L,M,N).

104



Depth of Tor

THEOREM 2.4. Let (R, m) be a local ring and M, N be finite nonzero
R-modules of finite projective dimension. Then

s 2> pdM + pdN — depthR.

If Torf (M, N) has an associated prime whose grade is equal to depthR,
then the equality holds in the above formula.

Proof. Let depthR = n and z = (z1, -+ ,z,) be a maximal R-
sequence. Consider the spectral sequences in Theorem 2.3.

Torf(M, Torf(R/_ag, N)) = Tor? (R/z, M, N),

P+
Tor;f(R/g:_, Torf(M,N)) = Torfﬂ(R/g, M, N).
Note that Tor/'(M,Tor®(R/z,N)) = 0if p > pdM + 1 or ¢ > pdN +
1. As 71, -+ ,T, are a maximal regular sequence, (0 :g/, m) # 0.

Computing Torffd N{(R/z,N) from the minimal free resolution of N,
we obtain Torfd N(R/z,N) # 0, and it is a submodule of a finite free
R/(z)-module. Hence

Torng(Ma Torde(R/g, N)) #0.

On the other hand, Torf(R/z, Torf(M, N)) = 0if p > n+1org > s+1.
It is due to the maximal cycle principle [4] that

pdM + pdN = sup{i | Tor®(R/z, M,N) # 0} < n +s.

Suppose that Tor®(M, N) has an associated prime P of grade n.
Choose a maximal R-sequence z = (21, ,Z,) in P. Then

Tory (R/z, Torl (M, N)) = (0 :rorn(a,ny ) # 0.
Therefore
n+s = pdM + pdN = sup{i | Tor®(R/z, M, N) # 0}.
This concludes the proof of Theorem 2.4. O
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Notice that the equality, n+s = pdM +pdN, does not depend on the
choice of the maximal R-sequence. Thus if Tor®(R/z, Torf(M, N)) #
0, for a maximal R-sequence z = (z1,- - ,Zx), then for any R-sequence

y= (yla e 7yn)»
TorZ(R/y, Tor®(M, N))=Tor[, (M, Torfy N (R/y, N)) # 0.
We ask whether there is a natural map between Tor?(R/z, Tor?(M, N))

and
Tor?(R/y, Tor®(M, N)) for two maximal R-sequence z and y.

C. Huneke has pointed out that s > pdM — depthN without as-
suming that N is of finite projective dimension (cf. [2]). Suppose that
s < pdM — depthN. Let pdM = m, pdM — depthN =1 and F. be a
minimal free resolution of M. Note that

0— Fp 5o = F — Fiy
is exact. Since s <[,

0-F,oN 2L ... sRON - F_,®N
is also exact. Due to the Buchsbaum-Eisenbud criterion of exactness[3],

depthy(yN > m — 1 + 1. Hence depthN > m — 1 + 1. This is a
contradiction and s > pdM — depthN.

If M ® N has the maximal grade then so does Tor>(M, N). So we
obtain the following corollary

COROLLARY 2.5. Let (R, m) be a local ring and M and N be finitely
generated nonzero R-modules of finite projective dimension. If grade
(M ® N) = depthR, then

s = pdM + pdN — depthR.

IfI(M®N) < oo, then annM + annN is m-primary and its grade is
equal to depthR. Hence we obtain a corollary similar to Theorem 1.1.

COROLLARY 2.6. Let (R, m) be a local ring and M and N be finitely
generated nonzero R-modules of finite projective dimension. If (M ®
N) < o0, then

s = pdM + pdN — depthR.
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3. Depth of Tor

Associated primes of modules behave well modulo a regular sequence
in the following sense.

LEMMA 3.1. Let (R, m) be a local ring and M be a finitely generated
R-module. If p is an associated prime of M and = be a nonzero divisor
of M. Then there exists an associated prime p' of M /zM containing p
and z.

Proof. Note that if z,y is an M-regular sequence, then y,z is also
M-regular sequence. Hence the union of the associated prime ideals of
M is contained in the union of the associated prime ideals of M/zM. It
is due to the prime avoidance lemma that each associated prime ideals
of M is contained in an associated prime ideals of M/zM. a

THEOREM 3.2. Let (R, m) be a local ring and M, N be finite nonzero
R-modules of finite projective dimension. If Tor(M, N) has an associ-
ated prime whose grade is equal to depthR, then depth(Tor?(M, N)) =
0 and Problem 1.1 is true for s.

Proof. Assume that depthN = 0. Compute Torf(M, N) using the
minimal free resolution of M tensored with N. Since Tor®(M, N) is a
submodule of &N annihilated by a matrix with the entries in maximal
ideal, s = pdM and depth(Tor?(M, N)) = 0.

Suppose that depthN > 0 and depth(Tor?(M, N)) > 0. Let z be a
non-zerodivisor both for N and Tor?(M, N). The short exact sequence

0—-NLN-—-N/zN—0
induces a long exact sequence

0 — Torf(M, N) 5 TorF(M, N) — Tor®(M, N/xzN)
— Tor® (M,N) — ---.
Thus 5 := max{i | Tor?(M,N/zN) # 0} is equal to s. Let p he an
associated prime of Tor?(M, N) of the maximal grade. It is due to

Lemma 2.2 that Tor®(M, N)/zTor®(M, N) has an associated prime
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p’ containing both p and z. So its grade is also equal to depthR.
From the long exact sequence in the above, Tor®(M, N)/zTor®(M, N)
is a submodule of Tor(M, N/xN). Hence p’ is an associated prime
Tor®(M, N/zN). It is due to Theorem 2.1 that

§ = pdM — depthN/zN = pdM — depthN + 1.

This is a contradiction since § = s = pdM — depthN. Therefore,
depth(Tor(M, N)) = 0 and Problem 1.1 is true by Theorem 1.2. [

If M ® N has the maximal grade then so does Tor?(M,N). In
particular, if [(M ® N) < oo, then M ® N has the maximal grade.
Thus the following result can be concluded by Theorem 3.2.

COROLLARY 3.3. Let (R, m) be a local ring and M and N be finitely
generated nonzero R-modules of finite prejective dimension. If grade
(M ® N) = depthR, then s = pdM — depthN, and Problem 1.1 is true
for s.

COROLLARY 3.4. Let (R,m) be a local ring and M and N be finitely
generated nonzero R-modules of finite projective dimension. If (M &
N) < oo, then s = pdM — depthN, and Problem 1.1 is true for s.
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