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GENERALIZED SOLUTIONS OF IMPULSIVE
CONTROL SYSTEMS AND REACHABLE SETS

CHANG EON SHIN AND J1 HYUN Ryvu

ABSTRACT. This paper is concerned with the impulsive Cauchy
problem

&= f(z) + Y _ gi(z)iu, t € [0,T], z(0) = ,

i=1

where u is a possibly discontinuous vector-valued function and f, g; :
R™ — IR™ are suitably smooth functions. We show that the input-
output map is Lipschitz continuous and investigate compactness of
reachable sets.

1. Introduction

Consider the Cauchy problem for an impulsive control system of the
form

z(t) =F(t,z,u) + i Gi(t,z,u)u;(t), te[0,T),

z(0) =z € R",

(1.1)

where u = (u1,--+ ,um) is a control function and the dot denotes the
derivative with respect to time. We assume that the vector field F is
bounded and Lipschitz continuous, the vector fields G;(i = 1,--- ,m)
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are Lipschitz continuous and bounded C?— functions, and control func-
tions u have values in a compact set in IR™.
By adding the variables zg, Zn+1, "+ , Tn+m With equations

o =t, Tnt1 = UL, 5 Tntm = Um,

the system (1.1) is expressed as

(1.2) &= f(z)+ Z gi(x)u;, tel0,T),

(1.3) 2(0) = (0,71, , Zn,ur(0), - , um(0)).

To define the generalized solution of (1.2) and (1.3) corresponding to a
control function u, we can consider the impulsive control system of the
form

(14) &= f(@)+ igi(x)ﬁi, te[0,T], =(0)=ze R™
=1

If u is a C1— function, then problem (1.4) has a unique solution in
the sense of the Carathéory solution. When u is just measurable, the
generalized solution is defined in [3] under the commutative assumption
of g;'s. When each g; depends on time and g; is not smooth with respect
to time, the generalized solution of (1.4) corresponding to scalar controls
is defined in [13].

We assume that f is Lipschitz continuous, bounded, and g; are
bounded, Lipschitz continuous, twice continuously differentiable and
commutative. In this paper, we define the generalized solutions of (1.4)
corresponding to bounded measurable functions v (Eventually the def-
inition in this paper is the same as the one in [3], however to prove
the continuity of input-output map the generalized solution here is de-
fined in a slightly different way.) and investigate the continuity of the
input-output map of the system (1.4).
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Consider the optimal problem

(1.5) s B C(z(u, T)),

where C : R™ — IR is a continuous function and R(T') is a reachable
set at time ¢ = T of the system (1.4). If R(T) is compact, then the
optimal value of (1.5) exists. The compactness of a reachable set plays
an important role on the existence problem of optimal control. We show
that the reachable set is compact when u varies in the set of measurable
functions whose total variations are uniformly bounded, and provide an
example that the reachable set is not compact when u varies in the set
of uniformly bounded functions.

2. Generalized Solution and Continuity of the input-output
map

Throughout this paper, e} denotes the vector in IR" ‘whose compo-
nents are all zero but i-th component which is 1, and B, (0, R) is the
closed ball in IR™ of radius R centered at the origin. For M > 0, let

U= {u = (ula e aum)lu : [O’T] - Bm(()’M))u € Cl}

Let the vector fields f,g; : R — R™ be such that f is Lipschitz
continuous and bounded by M,, and g¢; are bounded by Mi, twice
continuously differentiable, Lipschitz continuous of rank L, that is,

lgi(z) — 9i(y)| < Ljxz — y| for any z,y € R", i=1,---,m,
and commutative, that is,
[9i,9i)(z) =0, forany z€ R" andi,j=1,---,m.
Recall that [f, g] is the Lie bracket defined as
[f,9] = (Dzg) - f = (Dxf) - 9,
where D, f is the Jacobian matrix of the first derivatives of f.
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Let u € U. Consider the Cauchy problem

(2.1;) @ = f(z)+ Z gi(x)us, t €1[0,T],
(2.15) z(0) =z € R™

The solution of (2.1) is uniquely defined and we denote by z(u,-) the
solution of (2.1) corresponding to u. We define the generalized solution
z(w, -) of (2.1) corresponding to a hounded measurable function w and
show that the input-output map ¢ : w — z(w, -) is Lipschitz continuous
on the set of uniformly bounded measurable functions.

We write by exp(tf)(Z) the value at time ¢ of the Cauchy problem

z = f(z), z(0)=2z.

Due to the commutative assumption of g;’s, for a; € R (i = 1,--- ,m),

exp (Z aigi) () = exp(amgm) 0 - - 0 exp(a101) @).
i=1

Joining an equation 2(t) = @(¢) to the system (2.1). We have the
system in R™"

(22) X =fX)+) Gi(X)yu,  X(0)= (u(0),7) € R™*"

where X = (z,2) € R™"", f(X) = (0, f()) and §:(X) = (¢]", 9:(2))-
We introduce a C2— transformation 7' and show that system (2.2)
is transformed by T to the control system of the form

m

(23) X=fX)+> et  X(0) = (u(0),z) € R™T,

i
i=1

for some Lipschitz continuous function f and Z € IR™.
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Define a C2— homeomorphism T : R™™"™ — R™*" by
(2.4) (z,2) = T(w,y)
where T'(w,y) = (T1(w, y), Ta(w, y)),
m
Ti(w,y) =w and Ta(w,y)=exp (;wz’gi) (v)-

For any compact subset K C IR", the map T is Lipschitz continuous
on B,,(0, M) x K and the inverse of T is

T Yz,z) = (z,exp (Z ——zigi) (m)) .
i=1

If (2(t),z(t)) is a solution of (2.2) and (w(t),y(t)) = T~1(2(t),z(t)),
then by (3], (w(t), y(t)) satisfies the Cauchy problem

y = F*(w,y)
9 w(0) = u(0)

y(0) = exp(L;Z —ui(0)g:) (),

where F*(w,y) is the map from B,,(0, M) x R" to IR"™ defined by

(2.6) F™(w,y) = Dg (eXP (Z -—wigi)) - f(Ta(w, ),

=1

for w = (w1, ,Wm). Here Dy(exp(3 7, wigs)) is the n x n Jacobian
matrix of the diffeomorphism z — exp(} i~ wigi)(z). Thus system
(2.2) is transformed into (2.3) by T where f(X) in (2.3) is (0, F*(X))
and & = exp(}_ir; —ui(0)g;) ().
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REMARK 2.1. For u € C1, z is the solution of (2.1) corresponding
to u if and only if T-1(u,z) is the solution of (2.5), and (u,y) is the
solution of (2.5) if and only if Proj o T'(u,y) is the solution of (2.1)
corresponding to u, where Proj is the projection from R"™™ to R"™
such that Proj(z1, -« ,2Zm, %1, * ,Zn) = (Z1," -+ , Tn)-

Let us recall the value of F*(w,y). If, for a € [-M, M] and ,vp,y €
IR"™, we define Fy*(g,a,y,vp) as the value at time a of the solution of
the initial valued linear problem

9(t) = Dzg(exp(tg)()) - v(t), v(0) = vo,

then by the commutative assumption of g;

m—1
F* ('LU, y) ='Fl’.‘ (gma —Wm, €XP < Z _wigi) (y)1

i=1

m—2
(2.7) Ff‘ (gm_l, —Wm-—1, exp(z —w'ng) (y)7 )

=1
Fl*(gla —wi, Y, f(T2(w7y)))))

In the next lemma, the existence of the solution of system (2.5) is
guaranteed.

LEMMA 2.2. Forany R > 0, F* is Lipschitz continuous on B,.(0, M)
x B,(0, R), bounded by M1e™ M and the Lipschitz constant depends
only on R when m,n, L, M and M; are fixed.

Proof. We first show that for any ¢ = 1,--- ,m, the map (o, y, vo) —
F}(gi,a,y,vp) is Lipschitz continuous on [-M, M] x B,(0,R + (m —
)M M) x B,(0, Mye(m=1nLM)

Let i € {1,---,m}, y1,92 € B,(0,R+ (m — 1)MM;) and vy €
B,(0, M1e(m—UnLM) and for j = 1,2, let v; be the solution of

0;(t) = Dzgi(exp(tg:)(y;)) - vi(t), v;(0) = vo.

Then for ¢t € [-M, M], |v;(t)| < |vole™™*. Since g; is a C?— function,
every second derivative of g; is bounded on B,(0,R + mMM;) and
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there exists Li(R) > 0 such that for any §1,%2 € B,(0, R + mMM,)
and 7 € R",

|D2gi(1) - 0 — Dagi(2) - 0 < Lilgh — §2][9].
For any t € [-M, M],

[01(t) — v2(t)]

< |Degi(exp(tg:)) (y1) - vi(t) — Dzgi(exp(tg:))(y1) - va(t)|
+ | Dzgi(exp(tg:)) (y1) - va(t) — Dogi(exp(tg:))(y2) - va(t)]

< nL|vi(t) — va(t)| + Lilyy — yo|Mye™ M,

By Gronwall’s inequality,

t
|U1 (t) - ’U2(t)| < / L1|y1 — yleleanMenL(t_s)ds
0

L;
< - MyemmEMANLT |y ).
nL

Hence F7" is Lipschitz continuous w.r.t. y. By similar computation, F}*
is Lipschitz continuous w.r.t. a,vp and the Lipschitz constant depends
only on R.

Since for any [y < Rand j=1,--- ,m—1,

<R+ (m—-1)MM,,

exp (mz—l —wigi) ()

i=1
j—1
F; (gja —W;, eXp <Z _wzgz) (y), U aFl*(gla —w,Y, f(Tz(’U),:U)))) ‘
=1

< Mle(m—l)nLM’

and f, T are Lipschitz continuous on B,,(0, M) x B,(0,R), F* is Lip-
schitz continuous and bounded by M;e™?IM 0
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If X(-) is a solution of the system (2.3) corresponding to u € U,

then the function Y = X — Y7 e *™u; € R™" satisfies the Cauchy
problem

Y = f(Y+g;e;7‘+"u,->,
Y(0) = (0.0 (3 -ui0) @),

i=1

(2.8)

In the above system the differentiation of u does not appear. Thus the
Carathéory solution Y (u, t) of (2.8) corresponding to u exists when u is
bounded and measurable. Hence relying on Remark 2.1 we can define
the generalized solution of (2.1) corresponding to a bounded measurable
function u via the solution of (2.8).

DEFINITION 2.3. For a bounded measurable function u on [0,T],
z(u, ) is a generalized solution of (2.1) if

z(u,t) = ProjoT <Y(u, t) + Ze:.n“‘ui(t)) ,
i=1

where Y'(u,t) is a Carathéodory solution of (2.8) corresponding to u.

If &1 (u,t) = (&o(u, t),£(u,t)) is a solution of (2.8) corresponding to
a bounded measurable function u with &y(u,t) € R™ and £(u,t) € R,
then & = 0 and £(u, -) satisfies the Cauchy problem

(2.91) £ = F*(u,f),

(29,) £0) = exp( - ~u:(0): ) @)

i=1

Moreover, & (u,t) + > o, el ™ u;(t) = (u(t),€(u,t)) and

i=1 "1

ProjoT (51 (u.t) + i eg"*“”ui(t)) = exp (i 4 (t)gi) (€(u,t)).

i=1

i=1
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Thus z(u,t) = exp (Z:’;l ui(t)gi) (é(u,t)) is the generalized solution

of (2.1) corresponding to wu.

Conversely, if z(u, t) is the generalized solution of (2.1) corresponding
to a bounded measurable function u, then T~ (u, z(u,t)) — > -, el ™
u;(t) = (0,exp(3 i, —ui(t)gi)(x(u,t))) is the solution of (2.8). Hence
£(u,t) = exp(3 v, —ui(t)g:)(z(u,t)) is the solution of (2.9).

REMARK 2.4. For a bounded measurable function u on (0,77}, the
function z(u, t) is a solution of (2.1) if and only if £(u,t) = exp(> i u;
(t)g:)(z(u,t)) is the Carathéodory solution of (2.9).

Let
Uy = {u:[0,T] = Bm(0, M)|u is measurable}.

For 7 € [0,T), define the distance on > by

T
dr(u,v) = [u(0) — v(0)] + [u(7) — v(7)] +/0 |u(s) — v(s)|ds.

Now, we prove that the input-output map ¢ : u — z(u, ) is Lipschitz
continuous on Us.

THEOREM 2.5. (a) There exists a positive constant M such that

jz(u, 7) — z(a, 7)|

(3.10) < M ||u(0) — @(0)| + |u(r) — a(r)| -I-/O lu(s) — ﬂ(3)|d-’3] ;

for all u,@ € Uz, and T € [0,T).

(b) For u € U; and n = 0,1,---, let x,, be the generalized solution
of (2.1;) with z,(0) = Z,. If Z,, converges to Zo, then z,(-) converges
uniformly to zo(-).

Proof. (a) Let u,& € Up. Since F* is bounded by MyemnML
and Jexp(— 7, 4:(0)g:)(Z)], lexp(— ST, (0)g:)(2)] are bounded by
|Z|mM; M, the solutions of (2.9) are bounded by |Z|mM; M +T M;e™"EM
By Lemma 2.1, F* is Lipschitz continuous of rank L; for some L, and
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= (0, F*) is also Lipschitz continuous of rank L; on B, (0, R) where

f
R= M +|zlmM M + TMye™ LM,
For 7 € (0,7,

d .
aly(ua T) - Y(u’ T)l

< [f(m, )+ j:j ertmus(r) ) =7 (Y (@) + i ) l
< Ly(|Y (w,7) = Y (@ )| + fu(r) — (7).

Observing that [Y (u,0) — Y (4, 0)| < m|u(0) — @(0)|{M1e™EM, by Gron-
wall’s inequality

Y (u,7) = Y (&,7)]
< |Y(U,0) — Y(’EL,O)IeLﬂ' +/ Lllu(s) _ ,&(s)!eLllr—s{ds
0

.
< [u(0) — @(0)|mMyemEM T 4 / Lilu(s) — @(s)|e"17~*lds.
0

Since T is continuously differentiable, T' is Lipschitz continuous of some
rank Ly on By, 4,(0, R) and for any 7 € [0, 7]

|:1:(u, T) - IL‘(ﬂ,, T)l
m-n m+n
T(Y(U,T) + Z e;'”“"ui) -T <Y(’[l,7’) + Z eZnJ”nﬂi)
i=1 i=1
< Ly (lu(O) — @(0)|mMyem LM+

+ /0 Lylu(s) — a(s)|e" 17 *lds + [u(r) —a(r)|)

<

< M, [|u<o> ~ a0+ u(r) ()| + [ " fu(s) - a(s)us] ,

where My = Lo(mMyemtMtIaT 4 12017 1 1),
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(b) Forn=0,1,---, let &, be asolution of (2.9;) with
£n(0) = eXP(Z —u;(0)g:)(Zr)-
i=1

As n — 00, £&.(0) — &(0) and &,(-) converges uniformly to &o(:) on
[0,T). Since the set {¢,(t) : n=0,1,---, t€[0,T]}is bounded, z,(-)
converges uniformly to zo(-). a

Depending on Theorem 2.5 (a), it is natural to define the general-
ized solution x(u,-) of (2.1) corresponding to a bounded measurable
function u for each t € [0,T) as z(u,t) = lim,_,00 z(u™,t), where u™ €
C!, u" —winL!, lim,eou™(0) = u(0) and limp_, o u™(t) = u(t).

COROLLARY 2.6. Let {u™} be a sequence in Us such that for each
t € [0,T], u™(t) converges to u(t) € Us. Then for any t € [0,T], z(u"™,t)
converges to z(u,t).

3. Compactness of Reachable sets

Consider the impulsive control system

(3.1) &1 (t) = Fu(t),z1(t)) + Y Gilu(t), z:1(8))ui(t), te€[0,T],
* i=1

:El(O) =z e R".

We assume that F' is bounded and Lipschitz continuous in all vari-
ables, and G; are bounded, twice continuously differentiable, Lipschitz
continuous and commutative. By introducing the new variable zo(¢t) =
u(t), (3.1) is equivalent to

(1) = f(a(t) + D _ gi(a(t)) (),
=1

.TC(O) = (’U,(O),i), te [OaT]

(3.2)

where z = (zg,z1) € R™™", f = (0,F) and g; = (e, G;).
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For M > 0, define the set U; of control functions by

Uy = {u:[0,T] — IR™|the total variation of u on [0, T

is less than or equal to M},
and define the set s of control functions by
Uy = {u:[0,T] = Bn(0, M) | u is measurable}.
Define the reachable sets R;(T") and Rz(T) as
Ri(T)={z(u,D|uelh} and RT)={z(u,T)|u € Us}.

We show that in Theorem 3.1 R;(T) is compact, and provide Example
3.1 in which R»(T') is not compact.

THEOREM 3.1. R;i(T) is compact.
Proof. By Theorem 2.5 (a), there exists M > 0 such that

T
lz(u, T)| < |2(0, T)| + M [|u(0)] — |u(T)| +/0 lu(s)|ds] for any u € Us,

so the set Ry (T') is bounded.

Next we show that R;(T') is closed. Choose a point Q) in the closure
of Ry(T) and a sequence {Q.,} in the set Ry (T") converging to Q. Since
for each n € IN, Q,, € Ry1(T), there exists a control function u™ € U
such that z(u",T) = Q.. Observing that the total variations of u™
are uniformly bounded, by Theorem 2.1 in [9, p. 11| there exists a
subsequence {u™*} of {u™} such that limg_,, 4™ (t) = u(t) exists for
any t € [0,T] and total variation of u is less than or equal to M. Thus
u € U;. By Theorem 2.5 (b), Corollary 2.6 and Lebesque dominated
convergent theorem, z(u"*,T) converges to z(u,T) as k — oco. Since
Qn, = z(u™,T) and Q,, converges to @, Q@ = z(u,T) and Q lies in
the set Ry(T). d

In Theorem 3.1, the assumption that cortrol functions v have uni-
form total variation is essential. If control functions u are just bounded,
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then the set of z(u,T) is not compact. Before providing an example,
we review the relation between the solutions of (3.2) and (3.4).
If z(u,-) is a solution of (3.2) corresponding to u € U and

(3.3) &(u,t) =exp <Z —ui(t)gi) (z(u,t)),
then by Remark 2.4, £(u, -) satisfies

£ =F*(u,§)
(34) 60 = exp(Y_ - (0 ) ((0).2)

Conversely, if £(u, -) is solution of (3.4) corresponding to u, then
o(urt) = exp (3 s (0)0 ) o)
i=1

is a solution of (3.1).

ExAMPLE 3.2. Consider the impulsive control system

(3.5) <2) = (2%1”_ x%) + (i) a, t€[0,1], z(0)=(-1,0)

where u € Uy = {u : [0,1] — [-1,1] | u is measurable}. By adding a
new variable ¢ = u, the system (3.5) is equivalent to

To 0 1
(3.6) (zl) = ( Zo ) + ( ) 4, (0) = (u(0),—1,0).
T 2xq17 — :L‘% 1

The auxiliary function £(u, -) = (€o, 1, &2) corresponding to u is defined
as z(u,-) — u(-) by (3.3) and if u is differentiable, then {(u, -) satisfies

=

bo=do—u=0
Gi=d1—u=¢&+u

: . . 2
o = g~ 0t = 2zox; — 22 = u — &7
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Thus for v € Uy, the auxiliary function £(u,-) satisfies the Cauchy
problem

0 0
(37) (51) - ( u ) ) 5(0) = (Oa -1- U(O)a _U(O))
&2 u? - &°

For each n € N, define the control function u™ on [0,1] by

-1, %%St<2§inlak=0a"')n'—l
u”(t): 1a %§t<2—gni2,k=0,,n—l
1,  t=1

Then for each n € IV, u™(t) € Uz,u™(0) = —1, and u™(1) = 1. Let
§u™, 1) = (Gou™, 1), &4 (u™, 8), &2(u", 1))
be the solution of (3.7) corresponding to u™. Then for each n € IN
&u™,t) =0

e(un ) = /Ot u(s)ds — 1 — u"(0)
=/Otu"(s)ds

1) = [ (597 - €, ) ds — (0

and

= /Ot (u"(.s)2 - §%(u",s))>ds + 1.

Since fOt u™(s)ds converges uniformly to 0 and (u™)® =1, & (u™,1) — 0
and &2(u™,1) — 2. Since z(u™,1) = exp(u™(1)g)(£(u™,1)) converges to
exp(1lg) (0,0,2) = (1,1,3), (1,1, 3) lies in the closure of R2(1). Suppose
that for some u € Us, z(u,1) = (1,1, 3). By (3.3),

(38) 6(’“’) 1) = exp(—u(l)g)(l, 17 3) = (1 - u’(l), 1- u(1)7 3- u(l))
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Since |u(1)| < 1, we have
(3.9) 0<&(u,1) <2, and 2 < &(u,1) < 4,

where £(u,1) = (€o(u,1),€1(u, 1), (u,1)). By (3.7), &o(u,t) = u(t)? —
£8(u,t) < u(t)2 <1 and so

1
(3.10) €a(u,1) < /0 lds — u(0) < 2.

By (3.8)-(3.10), &(u,1) = 2,u(1) = 1 and so & (u,1) = 0.

Consequently, if Ry(1) is compact, then there exists v € Uy such
that £(u, 1) = (0,0,2). However, this is impossible. In fact, & (u,1) =
fol (u?(s) — €%(u, s))ds —u(0) = 2 and |u(t)| < 1 for any t € [0,1] imply
that

(3.11) w(0) = -1, &1(u,-) =0and u(t)® =1 ae.

On the other hand, by (3.7) & (u,t) = u(t) a.e. which contradicts
(3.11). Therefore, R2(1) is not compact.
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