Comm. Korean Math. Soc. 15 {2000), No. 1, pp. 123-131

HOLDER CONTINUITY OF H-SSSI SaS PROCESSES
Joo-Moxk KiMm

ABSTRACT. Let {X(¢) : t > 0} be a symmetric « stable and H-self-
similar process with stationary increments. We examine a.s. Holder
unboundedness of Sa.S H-sssi Chentsov processes and H-sssis Chentsov
fields for order v > H. Finally, we prove a.s. Holder continuity of SaS
H-sssi processes with ergodic scaling transformations for the case of
H>1/a

1. Introduction

We are interested in Sa.S H-sssi processes which are symmetric « stable
(SaS) and H-self-similar (ss) processes with index H and have stationary
increments (si). We know that the existence of moments limits the possible
values of H and, consequently, if an H-sssi process is SaS process, 0 <
a < 2, then its self-similarity index H is restricted to the interval (0,1/c)
if @ < 1 and to the interval (0, 1] if & > 1 ([2], [7])-

Nolan ([6]) gave a necessary and sufficient condition for the Holder
continuity of sample paths of Sa.S processes when 0 < o < 1. Takashima
([8]) studied the Hélder continuity of the linear fractional stable processes
of the continuous sample paths and Kono and Maejima ([5]) studied the
Holder continuity of the sample paths of the hamonizable fractional stable
processes as an application of the Lepage representation.

Chapter 2 is to review some definitions and properties of Sa.S H-sssis
Chentsov random fields. It was introduced by Paul Lévy in 1948 and
given a geometric construction by Chentsov in 1957 ([1}). Chentsov’s
construction allows the field to be defined as M(V}), t > 0, where M is a
Gaussian random measure and V; is the set of all hyperplanes separating
the origin zero from the point ¢.
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Shigeo Takenaka (]9]) gives a geometric construction for the Lévy frac-
tional Brownian field with 0 < H < 1/2. In Takenaka ([10]), he defines
the (o, H)-Takenaka fields. We define the Chentsov fields by generalizing
Chentsov’s construction. We let the measure M be SaS, 0 < a < 2, and
consider measurable set V.

In chapter 3, we prove a.s. Holder unboundedness of SaS H-sssis
Chentsov fields for all order v > H and a.s. Holder continuity of Sa.S H-
sssi processes with ergodic scaling transformations for the case of H > 1/a.

Self-similar processes are also related to many problems in time series
analysis, i.e., modeling for network traffic and estimating for the intensity
of long range dependence ([3], [4], [12]). Readers who are interested in
self-similar traffic modeling and analysis are referred to bibliographical
guide by Taqqu ([11]) and Willinger, Tagqu and Erramilli ([13]).

2. Preliminaries

A stochastic process X = {X(t) : t > 0} and for H > 0,a > 0, a scaling
transformation Sy, of X is defined by

(SHaX)(t) = a7 X(at), t>0.

DEFINITION 2.1. A stochastic process {X(¢) : t > 0} is called a self-
similar with index H > 0 (H-ss) if for any a > 0,

(SraX)(t) £ X(t),

where, £ denotes equality of the finite-dimensional distributions, we write
simply Sy for Sp,.

DEFINITION 2.2. The stochastic process {X(t) : t > 0} has stationary
increments (si) if

{X(t+h)—X(h):t>0} L {X(t)—X(0):¢>0}, forall h>0.

A positive self-similarity H and stationary increments imply that X (0) =
0 a.s. and X is continuous in probability:

X(t+h) - X)L XA Lr¥X(sgn h) L0 as h— 0.

Thus, we can take a separable version of X to obtain criteria for sample
boundedness and sample continuity in terms of finite-dimensional distri-
butions.
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DEFINITION 2.3. A stochastic process {X(t) : ¢ > 0} is called a self-
similar with ergodic scaling transformation if Sy is ergodic.

We consider SaS random fields of the form
X(t) = / 1y, (z)M(dz), t >0,
E

where M is a SaS random measure with control measure m and the Vs
are sets parametrized by t.

DEFINITION 24. Let 0 < a < 2, (F, £m) be a measure space, £
be non-trivial o-field on F, M be a SaS random measure with control
measure m and {V; : ¢t > 0} be a family of measurable subsets satisfying

m(V;) < oo for all ¢t > 0.
The process
X(t)y=MWV), t>0
is called a SaS Chentsov process.

LEMMA 2.1. Let {X(t) : t > 0} be a SaS H-sssi Chentsov process
with control measure m. Then 4
(i) m(Va) = a*Im(V;), t>0.
(il) m(VienAVR) = m(V;AV), t >0,
where A denotes the symmetric difference.
(iii) m(V,AV;) = |t — s|*, where c = m(ViAV,) .
(iv) H< L.

PROOF. {7, Proposition 8.2.3, 8.2.4, Corollary 8.2.5 ] |

Lemma 2.1 (iv) implies that the Lévy fractional Brownian motion can
not be represented as a Chentsov process when 1/2 < H < 1. The Lévy-
Chentsov and (a,H)-Takenaka processes provided examples of SaS and
H-sssis Chentsov processes with H = 1/ and 0 < H < 1/«, respectively.

LEMMA 2.2. Let {X(t) : t > 0} be a SaS Chentsov process with
control measure m. Then

~logE exp{i(X(t) - X(s))} = m(ViAV;).
PROOF. We know that
MWV)—-M(V;) = M(V,nVo)+M(V,n Vi) -MV,nV,)-M(V,N V)
= MV:NnV7)-M{,nVy)
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Since the last two terms are independent, we obtain
—log Eexp{i(M(V;) = M(V))} = m(VinV7)+m(V,nVy)
= m((V,nV)u(V,nVy))
= m(ViAV,) .

The extension of the notion of stationary increments to R™,n > 1, is
more delicate. Stationary increments in R! means the finite-dimensional
distributions of the increments are invariant under translation. Transla-
tions are the only Euclidean rigid body motions in R!, but in R", the
Euclidean rigid body motions include all rotations and translations.

Let G(R") denote the group of Euclidean rigid body motions in R".

DEFINITION 2.5. The random field {X(f) : ¢ € R"} has stationary
increments in the strong sense (sis) if

{X(g(t)) — X(9(0)) : t € R"} = {X () - X(0) : t € R™},
for all Euclidean rigid body motions g € G(R™).

Let 0 < @ <2, (E, £,m) be a measure space, £ be non-trivial o-field on
E, M be a SaS random measure with control measure m and {V;,t € R"}
be a family of measurable subsets satisfying

m(V;) <oco  forall teR™
The random field
X(t)=MV,), teR"
is called a SaS Chentsov field.

3. Holder continuity of Sa.S H-sssi processes

3.1. Unboundedness of the Chentsov field

We define
| X [la= [~ log E expiX]",
for Sa.S process X. We will consider sample path property of SaS H-sssi
Chentsov process X (t). We examine whether a stochastic Holder condition
of order v, i.e., there is an a.s. finite, positive random variable C'(w) such
that whenever h is small and ¢ > 0,

[X(t+h) - X(1)] < Clw) - 1"
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holds or not.

THEOREM 3.1. (i) Let {X(t) : t > 0} be Sa.S H-sssi Chentsov process.

Then
| X(t+h) — X(t)]

hY
is a.s. unbounded as h — 0 for all v > H.

(ii) Let {X(t) : t € R"} be SaS H-sssis Chentsov field. Then
| X(t+h) - X(2)]
K
is a.s. unbounded as || h ||— O for ally > H.

PRrROOF. (i) Since X(¢) is SaS Chentsov process,
I X(®) la = [-log EexpiX ()"
= [~log EexpiM(V;)]"/®

= (m(V)V"
By Lemma 2.1 (iii) and Lemma 2.2,
| X(E4+h) = X(0) o = [~ log Eexpi{X(t + k) — X()}]Va
= (m(ViaAVp)Ve
(ChaH)l/a — Cl/ahH.
Therefore,
hY = o(|| X(t +h) — X(?) [la)
for all v > H.

By [6, Theorem 3.1}, a uniform stochastic Holder condition of order ~ fails.
X(t+h) - X(t
X+ h)’Y ®)l is a.s. unbounded as h — 0 for all v > H.

(ii) We get m(Vy)AVy0)) = m(V;AVp), for all g € G(R™), t € R™ and
m(V;AV;) = ¢ || t — s ||*¥, where ¢ = m(V,,AV}) and ey = (1,0,---,0).
Therefore, by the same argument as (i), we can prove the assertion. [

Hence,

3.2. Holder continuity of SaS H-sssi processes

Chentsov fields lives in H < 1/a. Now, we consider Holder continuity
of SaS H-sssi processes for the case of H > 1/a.
For any v > 0 and ¢ > 0, define

E, . = {there is § > 0 such that | X (¢)| < ct” for all 0 < t < §}.
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LEMMA 3.1. Let {X(t):t > 0} be an H-ss with ergodic scaling trans-
formation Sy. Then
(i) P(E,)=0o0rl,
| X (@)

Y

PROOF. (i) Suppose that for some § > 0, | X ()| < ct” forall 0 < ¢t < 6.

Then

| X

=0 as. or co a.s.

(it) lim sup,_

t)] = |X(at/a)| = a¥|X(t/a)| < ct’a™™" for any a > 0.

—~

Put w = —. Then

Q|

I(SHX)(w)| = a [ X (au)| < a#c(au)’a? " = cu”

forO<u< é Thus, we know that
a

E,.C S§'E,. and P(E,.AS7'E,.) =0.

Since Sy is ergodic, we get P(E, ;) =0 or 1.

X
(i1) Let ¢, = sup{c > 0 : P(E, ) = 0}. Then limsup,_ L#—)—, = c, a.s.
By (i),
: Xl _
hr?j}lp = 0 as. or o a.s. O

THEOREM 3.2. Let {X(t):t > 0} be SaS H-sssi process and H > 1/«.
Suppose that Sy is ergodic. Then

P {lim sup [X(t+h) - Xl = 0} =1

8=0 1p|<s h

for any v < H and t > 0, so the sample paths of X are y-Holder continu-
ous.

PrROOF. Let
Xit+h)—-X
Y (t) = limsup [X (¢4 h) (t)l
h—0 hY
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Then

Y(at) < lim sup [ X(at + };37_ X(at)
H
d . af'{|X(t + h/a) — X(t)|}
=1
ot a¥(h/a)
¢ lmeupatr X (HW = X0
u—0 u?
LGBy (1),

By stationary increment property of X, {Y(t) : ¢t > 0} is (H —y)-sssi, i.e.,
Y(at +b) £ 7Y ().

With a = 1 at 0, we know that Y'(t) £ Y (0). By Lemma 3.1, it is enough
to prove that Y(0) < oo a.s.

o0

ZP max |X(t)] >2")

- o-n-— 1<t<2 n

< E P( ., ax X(t)— X2 =2

n— 1<t<2 n

+P(IX(@2" | 2277,
Choose (8 € (1/H, ). Then the first probability of last term is

P 1X() - X2 =27

9-n— 1<t(2 n

= P( max IX()] 22777

_ P(max X271 > 277

= P(max X (t)] > 271l DA

0<t<
< CﬁHE[H;)((;)Is_t;LIX(t)Hﬁ
< srE[|X (1))

on(H-—B
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The second probability is

P(IX(1/2" 2277 = P(1/27HH X)) 2277
P(,X(l)l 2 2—n’y—1 . 2nH+H)
< Cg}{2_n(H_7)ﬁ-

That is, for any v < H,

2_"'_1StS2_"

[o¢] o0
Y P( max  |X(H)]>27) < Cpr Y27 < 0.
n=1 n=1

Applying Borel-Cantelli’s lemma, with probability one, there is a num-
ber N such that

max | X(t)] <2™ for n > N.

2-n-1<t<2n
That is,
ltht)l <2 for 0 <t <27V,
Thus, we get

X(t
Y (0) = limsup X < oo as.
t—0 t
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