REMARKS ON DENJOY-DUNFORD AND DENJOY-PETTIS INTEGRALS

CHUN-KEE PARK

ABSTRACT. In this paper we generalize some results of R. A. Gordon ([4]) and J. L. Gamez and J. Mendoza ([3]) and prove some convergence theorems for Denjoy-Dunford and Denjoy-Pettis integrable functions.

1. Introduction

In 1989 Gordon ([4]) introduced the concepts of Denjoy-Dunford and Denjoy-Pettis integrals for Banach-valued functions and proved some properties of those integrals. Gamez and Mendoza improved some results of Gordon. Gordon ([5]) also obtained some convergence theorems for Denjoy integrable real-valued functions. In this paper we generalize some results of Gordon ([4]) and Gamez and Mendoza ([3]) and obtain some convergence theorems for Denjoy-Dunford and Denjoy-Pettis integrable functions.

2. Preliminaries

Throughout this paper X will denote a real Banach space and X^* its dual.

DEFINITION 2.1 ([4]). Let $F:[a,b]\to X$ and let E be a subset of [a,b].

(a) The function F is BV on E if $\sup \left\{ \sum_{i} \|F(d_i) - F(c_i)\| \right\}$ is finite where the supremum is taken over all finite collections $\{[c_i, d_i]\}$ of

Received August 18, 1999. Revised December 22, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 28B05, 46G10, 26A39.

Key words and phrases: Denjoy-Dunford integrability, Denjoy-Pettis integrability, Denjoy integrability.

nonoverlapping intervals that have endpoints in E.

(b) The function F is AC on E if for each $\epsilon > 0$ there exists $\delta > 0$ such that $\sum_{i} \|F(d_i) - F(c_i)\| < \epsilon$ whenever $\{[c_i, d_i]\}$ is a finite collection of

nonoverlapping intervals that have endpoints in E and satisfy $\sum_{i} (d_i - c_i) < \delta$.

- (c) The function F is BVG on E if E can be expressed as a countable union of sets on each of which F is BV.
- (d) The function F is ACG on E if F is continuous on E and if E can be expressed as a countable union of sets on each of which F is AC.

DEFINITION 2.2 ([4]). Let $\{F_{\alpha}\}$ be a family of functions from [a, b] to X and let E be a subset of [a, b]. The family $\{F_{\alpha}\}$ is uniformly BVG (ACG) on E if each F_{α} is BVG (ACG) on E and if each perfect set in E contains a portion on which every F_{α} is BV (AC).

DEFINITION 2.3 ([4]). Let $F:[a,b] \to X$ and let $t \in (a,b)$. A vector z in X is the approximate derivative of F at t if there exists a measurable set $E \subset [a,b]$ that has t as a point of density such that $\lim_{\substack{s \to t \\ s \in E}} \frac{F(s) - F(t)}{s - t} = z$. We will write $F'_{ap}(t) = z$.

A function $f:[a,b]\to\mathbb{R}$ is Denjoy integrable on [a,b] if there exists an ACG function $F:[a,b]\to\mathbb{R}$ such that $F'_{ap}=f$ almost everywhere on [a,b]. The function f is Denjoy integrable on the set $E\subset [a,b]$ if $f\chi_E$ is Denjoy integrable on [a,b].

DEFINITION 2.4 ([4]). (a) A function $f:[a,b]\to X$ is Denjoy-Dunford integrable on [a,b] if for each x^* in X^* the function x^*f is Denjoy integrable on [a,b] and if for every interval I in [a,b] there exists a vector x_I^{**} in X^{**} such that $x_I^{**}(x^*)=\int_I x^*f$ for all x^* in X^* .

(b) A function $f:[a,b] \to X$ is Denjoy-Pettis integrable on [a,b] if f is Denjoy-Dunford integrable on [a,b] and if $x_I^{**} \in X$ for every interval I in [a,b].

Throughout this paper (DD) $\int_a^b f$ and (DP) $\int_a^b f$ will denote the Denjoy-Dunford integral and the Denjoy-Pettis integral of f on [a,b], respectively.

3. Denjoy-Dunford and Denjoy-Pettis Integrability

In this section we obtain some properties of Denjoy-Dunford and Denjoy-Pettis integrable functions.

THEOREM 3.1. (a) If $f:[a,b] \to X$ is Denjoy-Dunford integrable on [a,b], then f is weakly measurable.

(b) If $f:[a,b] \to X$ is bounded and Denjoy-Dunford integrable on [a,b], then f is Dunford integrable on [a,b].

PROOF. (a) If $f:[a,b]\to X$ is Denjoy-Dunford integrable on [a,b], then $x^*f:[a,b]\to\mathbb{R}$ is Denjoy integrable on [a,b] for all $x^*\in X^*$. Hence x^*f is measurable for all $x^*\in X^*$ ([4, Theorem 12 (a)]). Therefore f is weakly measurable.

(b) If $f:[a,b] \to X$ is bounded and Denjoy-Dunford integrable on [a,b], then $x^*f:[a,b] \to \mathbb{R}$ is bounded and Denjoy integrable on [a,b] for all $x^* \in X^*$. Hence x^*f is Lebesgue integrable on [a,b] for all $x^* \in X^*([5, \mathbb{C})]$.

It follows immediately from Pettis Measurability Theorem and Theorem 3.1 that if X is a separable Banach space and $f:[a,b] \to X$ is Denjoy-Dunford integrable on [a,b] then f is measurable.

THEOREM 3.2 ([3]). A function $f:[a,b] \to X$ is Denjoy-Dunford integrable on [a,b] if and only if x^*f is Denjoy integrable on [a,b] for all $x^* \in X^*$.

Theorem 3.3. Suppose that $f:[a,b]\to X$ is Denjoy-Dunford integrable on each interval $[c,d]\subset (a,b)$. If $\lim_{\substack{c\to a^+\\ d\to b^-}}(DD)\int_c^d f$ exists in norm

in X^{**} , then f is Denjoy-Dunford integrable on [a,b] and (DD) $\int_a^b f = \lim_{\substack{c \to a^+ \\ d \to b^-}} (DD) \int_c^d f$.

PROOF. Let $\lim_{\substack{c \to a^+ \\ d \to b^-}} (DD) \int_c^d f = x_0^{**}$, where $x_0^{**} \in X^{**}$. By hypothesis, for each $x^* \in X^*$, $x^*f : [a,b] \to \mathbb{R}$ is Denjoy integrable on each

interval $[c,d] \subset (a,b)$ and

$$\langle x^*, x_0^{**} \rangle = \lim_{\substack{c \to a^+ \\ d \to b^-}} \left\langle x^*, (DD) \int_c^d f \right\rangle = \lim_{\substack{c \to a^+ \\ d \to b^-}} \int_c^d x^* f.$$

Hence for each $x^* \in X^*$, x^*f is Denjoy integrable on [a,b] and $\int_a^b x^*f = \lim_{\substack{c \to a^+ \\ d \to b^-}} \int_c^d x^*f$ ([5, Theorem 15.12]). Thus f is Denjoy-Dunford integrable on [a,b] by Theorem 3.2 and

$$\langle x^*, x_0^{**} \rangle = \lim_{\substack{c \to a^+ \\ d \to b^-}} \int_c^d x^* f = \int_a^b x^* f = \left\langle x^*, (DD) \int_a^b f \right\rangle$$

for all
$$x^* \in X^*$$
. Hence $(DD) \int_a^b f = x_0^{**} = \lim_{\substack{c \to a^+ \\ d \to b^-}} (DD) \int_c^d f$.

DEFINITION 3.4. Let $\{f_{\alpha}\}$ be a family of Denjoy-Dunford integrable functions from [a,b] to X. The family $\{f_{\alpha}\}$ is uniformly Denjoy-Dunford integrable on [a,b] if for each perfect set $E \subset [a,b]$ there exists an interval $[c,d] \subset [a,b]$ with $c,d \in E$ and $E \cap (c,d) \neq \phi$ such that every f_{α} is Dunford integrable on $E \cap [c,d]$ and for every α the series $\sum_{n} \left\| (DD) \int_{c_{n}}^{d_{n}} f_{\alpha} \right\|$ converges where $[c,d] - E = \bigcup_{n} (c_{n},d_{n})$.

THEOREM 3.5. Let $\{f_{\alpha}\}$ be a family of Denjoy-Dunford integrable functions from [a,b] to X and let $F_{\alpha}(t)=(DD)\int_a^t f_{\alpha}$ for each α . If the family $\{F_{\alpha}\}$ is uniformly ACG on [a,b], then the family $\{f_{\alpha}\}$ is uniformly Denjoy-Dunford integrable on [a,b].

PROOF. Suppose that the family $\{F_{\alpha}\}$ is uniformly ACG on [a,b] and let E be a perfect set in [a,b]. Then there exists an interval $[c,d] \subset [a,b]$ with $c,d \in E$ and $E \cap (c,d) \neq \phi$ such that every F_{α} is AC on

 $E\cap [c,d]$. Fix α . For each $x^*\in X^*$ the function $F_{\alpha}x^*$ is also AC on $E\cap [c,d]$ and $\langle x^*,F_{\alpha}(t)\rangle=\int_a^t x^*f_{\alpha},t\in [a,b]$. For each $x^*\in X^*$ let $G_{\alpha,x^*}:[c,d]\to\mathbb{R}$ be the function that equals $F_{\alpha}x^*$ on E and is linear on the intervals contiguous to E. Then the function G_{α,x^*} is AC on [c,d] for each $x^*\in X^*$ ([4, Theorem 3]). Hence G'_{α,x^*} exists almost everywhere on [c,d] and is Lebesgue integrable on [c,d] for each $x^*\in X^*$. Since $G'_{\alpha,x^*}=(F_{\alpha}x^*)'=x^*f_{\alpha}$ almost everywhere on $E\cap [c,d]$ for each $x^*\in X^*$. Thus f_{α} is Lebesgue integrable on $E\cap [c,d]$ for each $x^*\in X^*$. Thus f_{α} is Dunford integrable on $E\cap [c,d]$. Since F_{α} is BV on $E\cap [c,d]$, the series $\sum_n \|F_{\alpha}(d_n)-F_{\alpha}(c_n)\|=\sum_n \|(DD)\int_{c_n}^{d_n}f_{\alpha}\|$ converges where $[c,d]-E=\cup_n(c_n,d_n)$. Since this is valid for each α , the family $\{f_{\alpha}\}$ is

THEOREM 3.6 ([5]). Let E be a bounded, closed subset of \mathbb{R} with bounds a and b and let $((a_k,b_k))$ be the sequence of intervals contiguous to E in [a,b]. Suppose that $f:[a,b]\to\mathbb{R}$ is Denjoy integrable on E and on each interval $[a_k,b_k]$. If $\lim_{k\to\infty}\omega\left(\int_{a_k}^t f,[a_k,b_k]\right)=0$ and the series $\sum_{k=1}^\infty \left|\int_{a_k}^{b_k} f\right|$ converges, then f is Denjoy integrable on [a,b] and

uniformly Denjoy-Dunford integrable on [a, b].

$$\int_a^b f = \int_a^b f \chi_E + \sum_{k=1}^\infty \int_{a_k}^{b_k} f.$$

THEOREM 3.7. Let E be a bounded, closed subset of $\mathbb R$ with bounds a and b and let $((a_k,b_k))$ be the sequence of intervals contiguous to E in [a,b]. Suppose that $f:[a,b]\to X$ is Denjoy-Dunford integrable on E and on each interval $[a_k,b_k]$. If $\lim_{k\to\infty}\omega\left((DD)\int_{a_k}^t f,[a_k,b_k]\right)=0$ and the series $\sum_{k=1}^\infty \left\|(DD)\int_{a_k}^{b_k}f\right\|$ converges, then f is Denjoy-Dunford integrable on [a,b] and

$$(DD) \int_{a}^{b} f = (DD) \int_{a}^{b} f \chi_{E} + \sum_{k=1}^{\infty} (DD) \int_{a_{k}}^{b_{k}} f.$$

PROOF. For each $x^* \in X^*$, x^*f satisfies the hypothesis of Theorem 3.6. Hence by Theorem 3.6, for each $x^* \in X^*$, x^*f is Denjoy integrable on [a,b] and

$$\int_{a}^{b} x^* f = \int_{a}^{b} x^* f \chi_E + \sum_{k=1}^{\infty} \int_{a_k}^{b_k} x^* f.$$

By Theorem 3.2, f is Denjoy-Dunford integrable on [a, b] and

$$\left\langle x^*, (DD) \int_a^b f \right\rangle = \left\langle x^*, (DD) \int_a^b f \chi_E \right\rangle$$
$$+ \sum_{k=1}^{\infty} \left\langle x^*, (DD) \int_{a_k}^{b_k} f \right\rangle$$

for each $x^* \in X^*$. Since $\sum_{k=1}^{\infty} \left\| (DD) \int_{a_k}^{b_k} f \right\|$ converges, we have

$$\sum_{k=1}^{\infty} \left\langle x^*, (DD) \int_{a_k}^{b_k} f \right\rangle = \left\langle x^*, \sum_{k=1}^{\infty} (DD) \int_{a_k}^{b_k} f \right\rangle$$

for each $x^* \in X^*$. Hence we have $(DD) \int_a^b f = (DD) \int_a^b f \chi_E + \sum_{k=1}^{\infty} (DD) \int_{a_k}^{b_k} f$.

DEFINITION 3.8. Let $\{F_{\alpha}\}$ be a family of functions from [a,b] to X and let E be a subset of [a,b]. The family $\{F_{\alpha}\}$ is equi AC on E if for each $\epsilon > 0$ there exists $\delta > 0$ such that $\sum_{i} \|F_{\alpha}(d_{i}) - F_{\alpha}(c_{i})\| < \epsilon$ for all α whenever $\{[c_{i},d_{i}]\}$ is a finite collection of nonoverlapping intervals that have endpoints in E and satisfy $\sum_{i} (d_{i}-c_{i}) < \delta$.

DEFINITION 3.9. Let $\{F_{\alpha}\}$ be a family of functions from [a,b] to X and let E be a closed subset of [a,b] with its bounds c and d. The family $\{F_{\alpha}\}$ is equi BV on E if each F_{α} is BV on E and for each $\epsilon>0$ there exists a positive interger N such that $\sum_{n=N}^{\infty}\|F_{\alpha}(d_n)-F_{\alpha}(c_n)\|<\epsilon$ for all α where $[c,d]-E=\cup_{n=1}^{\infty}(c_n,d_n)$.

LEMMA 3.10. Let $\{F_{\alpha}\}$ be a family of functions from [a,b] to X and let E be a closed subset of [a,b] with its bounds c and d. If $\{F_{\alpha}\}$ is equi AC on E, then $\{F_{\alpha}\}$ is equi BV on E.

PROOF. Suppose that $\{F_{\alpha}\}$ is equi AC on E. Then each F_{α} is BV on E. Let $\epsilon>0$ be given and let $[c,d]-E=\cup_{i=1}^{\infty}(c_i,d_i)$. Since $\{F_{\alpha}\}$ is equi AC on E, there exists $\delta>0$ such that $\sum_i \|F_{\alpha}(d_i')-F_{\alpha}(c_i')\|<\epsilon/2$ for all α whenever $\{[c_i',d_i']\}$ is a finite collection of nonoverlapping intervals that have endpoints in E and satisfy $\sum_i (d_i'-c_i')<\delta$. Since $\sum_{i=1}^{\infty} (d_i-c_i)<\infty$, there exists a positive integer N such that $\sum_{i=N}^{\infty} (d_i-c_i)<\delta$. Hence we have

$$n \geq N \Rightarrow \sum_{i=N}^n \|F_lpha(d_i) - F_lpha(c_i)\| < rac{\epsilon}{2}$$

for all α . Letting $n \to \infty$, we have

$$\sum_{i=N}^{\infty} \|F_{\alpha}(d_i) - F_{\alpha}(c_i)\| \leq \frac{\epsilon}{2} < \epsilon$$

for all α . Therefore $\{F_{\alpha}\}$ is equi BV on E.

DEFINITION 3.11. Let $\{F_{\alpha}\}$ be a family of functions from [a,b] to X. The family $\{F_{\alpha}\}$ is equi ACG on a subset E of [a,b] if each F_{α} is ACG on E and if each perfect set in E contains a portion on which the family $\{F_{\alpha}\}$ is equi AC.

THEOREM 3.12. Let $\{f_{\alpha}\}$ be a family of Denjoy-Dunford integrable functions from [a,b] to X and let $F_{\alpha}(t)=(DD)\int_a^t f_{\alpha}$ for each α . If the family $\{F_{\alpha}\}$ is equi ACG on [a,b], then for each perfect set $E\subset [a,b]$ there exists a portion $E\cap (c,d)$ of E such that every f_{α} is Dunford integrable on $E\cap [c,d]$ and $\sum_n \left\|(DD)\int_{c_n}^{d_n} f_{\alpha}\right\|$ converges uniformly on α where $[c,d]-E=\cup_n(c_n,d_n)$.

PROOF. Suppose that $\{F_{\alpha}\}$ is equi ACG on [a,b] and let $E \subset [a,b]$ be a perfect set. Then $\{F_{\alpha}\}$ is uniformly ACG on [a,b]. By Theorem 3.5, there exists a portion $E \cap (c',d') \neq \phi$ of E with $c',d' \in E$ such that every f_{α} is Dunford integrable on $E \cap [c',d']$. Since $\{F_{\alpha}\}$ is equi ACG on [a,b], for the perfect set $E \cap [c',d']$ there exists a portion $E \cap (c,d) \neq \phi$ of $E \cap [c',d']$ with $c,d \in E$ such that $\{F_{\alpha}\}$ is equi AC on $E \cap [c,d]$. Each f_{α} is also Dunford integrable on $E \cap [c,d]$. By Lemma 3.10, $\{F_{\alpha}\}$ is equi BV on $E \cap [c,d]$. Hence for each $\epsilon > 0$ there exists a positive integer N such that $\sum_{n=N}^{\infty} \|F_{\alpha}(d_n) - F_{\alpha}(c_n)\| < \epsilon$ for all α where $[c,d] - E = \bigcup_n (c_n,d_n)$. Therefore $\sum_n \|(DD) \int_{c_n}^{d_n} f_{\alpha}\|$ converges uniformly on α where $[c,d] - E = \bigcup_n (c_n,d_n)$.

4. Convergence Theorems

In this section we obtain some results of the convergence of Denjoy-Dunford and Denjoy-Pettis integrable functions.

THEOREM 4.1 ([5]). Let (f_n) be a sequence of Denjoy integrable functions from [a,b] to \mathbb{R} , and let $F_n(t) = \int_a^t f_n$ for each n, and suppose that (f_n) converges pointwise to f on [a,b]. If (F_n) is equicontinuous and equi ACG on [a,b], then f is Denjoy integrable on [a,b] and $\int_a^b f = \lim_{n\to\infty} \int_a^b f_n$.

THEOREM 4.2. Let (f_n) be a sequence of Denjoy-Dunford integrable functions from [a,b] to X, and let $F_n(t) = (DD) \int_a^t f_n$ for each n, and suppose that (f_n) converges pointwise to f on [a,b]. If (F_n) is equicontinuous and equi ACG on [a,b], then f is Denjoy-Dunford integrable on [a,b] and $(DD) \int_a^b f = \lim_{n \to \infty} (DD) \int_a^b f_n$ in the weak* topology of X^{**} .

PROOF. We note that (x^*f_n) and (x^*F_n) satisfy the hypothesis of Theorem 4.1 for every $x^* \in X^*$. Hence x^*f is Denjoy integrable on [a,b] and $\int_a^b x^*f = \lim_{n \to \infty} \int_a^b x^*f_n$ for every $x^* \in X^*$. By Theorem 3.2, f is Denjoy-Dunford integrable on [a,b] and $\left\langle x^*, (DD) \int_a^b f \right\rangle = \lim_{n \to \infty} \left\langle x^*, (DD) \int_a^b f_n \right\rangle$ for every $x^* \in X^*$. Hence $(DD) \int_a^b f = \lim_{n \to \infty} (DD) \int_a^b f_n$ in the weak* topology of X^{**} .

THEOREM 4.3 ([4]). Let X be weakly sequentially complete and let $f:[a,b] \to X$ be Denjoy-Dunford integrable on [a,b]. If f is measurable, then f is Denjoy-Pettis integrable on [a,b].

Theorem 4.4. Let X be weakly sequentially complete, and let (f_n) be a sequence of measurable Denjoy-Dunford integrable functions from [a,b] to X, and let $F_n(t)=(DD)\int_a^t f_n$ for each n, and suppose that (f_n) converges pointwise to f on [a,b]. If (F_n) is equicontinuous and equi ACG on [a,b], then f is Denjoy-Pettis integrable on [a,b] and $(DP)\int_a^b f=\lim_{n\to\infty}(DP)\int_a^b f_n$ in the weak topology of X.

PROOF. By Theorem 4.2, f is Denjoy-Dunford integrable on [a,b] and $\left\langle x^*,(DD)\int_a^b f\right\rangle = \lim_{n\to\infty}\left\langle x^*,(DD)\int_a^b f_n\right\rangle$ for every $x^*\in X^*$. By Theorem 4.3, f_n is Denjoy-Pettis integrable on [a,b] for each n. Since each f_n is measurable and (f_n) converges pointwise to f on [a,b], f is also

measurable on [a,b]. By Theorem 4.3, f is also Denjoy-Pettis integrable on [a,b] and $(DP)\int_a^b f = \lim_{n \to \infty} (DP)\int_a^b f_n$ in the weak topology of $X.\square$

THEOREM 4.5. Let (f_n) be a sequence of Denjoy-Dunford integrable functions from [a,b] to a reflexive Banach space X, and let $F_n(t) = (DD) \int_a^t f_n$ for each n, and suppose that (f_n) converges pointwise to f on [a,b]. If (F_n) is equicontinuous and equi ACG on [a,b], then f is Denjoy-Dunford integrable on [a,b] and there is a sequence (g_n) with $g_n \in co\{f_n | n = 1,2,3,\ldots\}$ such that $(DD) \int_a^b f = \lim_{n \to \infty} (DD) \int_a^b g_n$ in norm.

PROOF. By Theorem 4.2, f is Denjoy-Dunford integrable on [a,b] and $(DD) \int_a^b f = \lim_{n \to \infty} (DD) \int_a^b f_n$ in the weak* topology of X^{**} . Since X is reflexive, $(DD) \int_a^b f = \lim_{n \to \infty} (DD) \int_a^b f_n$ weakly in X^{**} . Thus $\lim_{n \to \infty} \left((DD) \int_a^b f_n - (DD) \int_a^b f \right) = 0$ weakly in X^{**} . By Corollary 2[1, p11], there is a sequence (x_n^{**}) of convex combinations of the $(DD) \int_a^b f_n - (DD) \int_a^b f$ such that $\lim_{n \to \infty} ||x_n^{**}|| = 0$. For each n, let $x_n^{**} = \sum_{i=1}^{k(n)} \alpha_{n_i} = \left((DD) \int_a^b f_{n_i} - (DD) \int_a^b f \right)$, where $\alpha_{n_i} \ge 0$ for each i and $\sum_{i=1}^{k(n)} \alpha_{n_i} = 1$. Then

$$\lim_{n \to \infty} \|x_n^{**}\| = \lim_{n \to \infty} \left\| \sum_{i=1}^{k(n)} \alpha_{n_i} \left((DD) \int_a^b f_{n_i} - (DD) \int_a^b f \right) \right\|$$

$$= \lim_{n \to \infty} \left\| (DD) \int_a^b \left(\sum_{i=1}^{k(n)} \alpha_{n_i} f_{n_i} \right) - (DD) \int_a^b f \right\|$$

$$= 0.$$

For each
$$n$$
, let $g_n = \sum_{i=1}^{k(n)} \alpha_{n_i} f_{n_i}$. Then for each n , $g_n \in co\{f_n | n = 1, 2, 3, ...\}$ and $(DD) \int_a^b f = \lim_{n \to \infty} (DD) \int_a^b g_n$ in norm.

Theorem 4.6. Let X be weakly sequentially complete, and let (f_n) is a sequence of measurable Denjoy-Dunford integrable functions from [a,b] to X, and let $F_n(t)=(DD)\int_a^t f_n$ for each n, and suppose that (f_n) converges pointwise to f on [a,b]. If (F_n) is equicontinuous and equi ACG on [a,b], then f is Denjoy-Pettis integrable on [a,b] and there is a sequence (g_n) with $g_n \in co\{f_n|n=1,2,3,\dots\}$ such that $(DP)\int_a^b f=\lim_{n\to\infty}(DP)\int_a^b g_n$ in norm.

PROOF. By Theorem 4.4, f is Denjoy-Pettis integrable on [a,b] and $(DP) \int_a^b f = \lim_{n \to \infty} (DP) \int_a^b f_n$ weakly in X. By Corollary 2 ([1, p. 11]), there is a sequence (x_n) of convex combinations of the $(DP) \int_a^b f_n - (DP) \int_a^b f$ such that $\lim_{n \to \infty} ||x_n|| = 0$. Using the same method in the proof of Theorem 4.5, we obtain a sequence (g_n) with $g_n \in co\{f_n|n=1,2,3,\ldots\}$ such that $(DP) \int_a^b f = \lim_{n \to \infty} (DP) \int_a^b g_n$ in norm.

References

- [1] J. Diestel, Sequences and Series in Banach spaces, Grad. Texts in Math., vol. 92, Springer, 1984.
- [2] J. Diestel and J. J. Uhl Jr., Vector measures, Math. Surveys No. 15, Amer. Math. Soc., 1977.
- [3] J. L. Gamez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), 115-133.
- [4] R. A. Gordon, The Denjoy extension of the Bochner, Pettis and Dunford integrals, Studia Math. 92 (1989), 73-91.
- [5] ______, The integrals of Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. Math., vol. 4, Amer. Math. Soc., 1994.

[6] D. W. Solomon, *Denjoy integration in abstract spaces*, Mem. Amer. Math. Soc vol. 85, Amer. Math. Soc., 1969.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea E-mail: ckpark@cc.kangwon.ac.kr