p-ADIC HEIGHTS

KYUNG AH SHIM AND SUNG SIK WOO

ABSTRACT. In this paper, for a given p-adic quasicharacter $c_v: k_v^* \to \mathbb{Q}_p$ satisfying a special condition, we will explicitly construct an admissible pairing corresponding to c_v . We define a p-adic height on the arbitrary abelian varieties associated to divisors and c_v by using admissible pairings at every nonarchimedean places. We also show that our p-adic height satisfies similar properties of Néron-Tate's canonical p-adic height.

1. p-adic quasicharacter and admissible pairing

Let l be a prime. Let k_v be a finite extension of \mathbb{Q}_l which is locally compact with respect to $|\cdot|_v$. Here $|\cdot|_v = |\cdot|_l \circ N_{k_v/\mathbb{Q}_l} : k_v^* \to \mathbb{Q}^*$ where $|\cdot|_l$ is canonical norm defined by the condition $|l|_l = l^{-1}$. The kernel U_v is called the group of units. Let p be a fixed prime number.

DEFINITION 1.1. We call any continuous homomorphism $c_v: k_v^* \to \mathbb{Q}_p$ a p-adic (additive) quasicharacter of the field k_v . A p-adic quasicharacter c_v is said to be unramified if it is trivial on U_v .

For example, $\log_p \circ | \cdot v$ is a p-adic quasicharacter where $\log_p : \mathbb{Q}_p^* \to \mathbb{Z}_p$ denotes the p-adic logarithm extended by the usual convention $\log_p p = 0$. All quasicharacters of the form $\log_p \circ | \cdot v^n$, $n \in \mathbb{Z}$ are unramified.

Suppose k_v is a finite extention of \mathbb{Q}_l . We select a fixed element π of uniformizer. We can write an element $\alpha \in k_v^*$ uniquely in the form $\alpha = \tilde{\alpha} \cdot \rho$ where $\tilde{\alpha} \in U_v$ and ρ is power of π . In this case the map $\alpha \to \tilde{\alpha}$ is continuous homomorphism of k_v^* onto U_v which is identity

Received March 2, 1999. Revised September 28, 1999.

¹⁹⁹¹ Mathematics Subject Classification: Primary 14K15.

Key words and phrases: p-adic height, p-adic quasicharacter, admissible pairing. The first author was supported by the K.R.F., 1998. The second author has been supported by the grant BSRI-95-1435 of the Korea Ministry of Education.

on U_v . Let c be a quasicharacter and \tilde{c} be its restriction to U_v . Then $z \mapsto \log_v(\tilde{c}(z) \cdot |z|_v^n)$ is again a quasicharacter.

Now let A be an abelian variety over k_v . We let $D(A)_{k_v}$ be the group of divisors on A whose components are k_v -rational and $D_a(A)_{k_v}$ the subgroup of $D(A)_{k_v}$ which consists of algebraically equivalent to 0 and $Z_0(A)_{k_v}$ the group of 0-cycles of degree 0 whose components are k_v -rational. If $\Delta = (f)$ is principal, for any cycle $\mathfrak a$ such that $|\Delta| \cap |\mathfrak a| = \emptyset$ we let

$$f(\mathfrak{a}) = \prod_{i=1}^r f(a_i)^{n_i}, ext{ for } \mathfrak{a} = \sum_{i=1}^r n_i(a_i) \in Z_0(A)_{k_v}.$$

This value depends only on Δ since the constant disappears when we take the product over the points of a 0-cycle of degree 0.

DEFINITION 1.2. Let A be an abelian variety over a local field k_v . A p-adic quasicharacter $c_v: k_v^* \to \mathbb{Q}_p$ is said to be admissible if there is a pairing

$$D_a(A)_{k_v} imes Z_0(A)_{k_v} o \mathbb{Q}_p,$$
 $(\Delta, \mathfrak{a}) \mapsto \langle \Delta, \mathfrak{a} \rangle_{c_v} \text{such that } |\Delta| \cap |\mathfrak{a}| = \emptyset$

which satisfies the following properties:

- (1) It is bilinear.
- (2) If $\Delta = (f)$ is principal then $\langle \Delta, \mathfrak{a} \rangle_{c_v} = c_v(f(\mathfrak{a}))$.
- (3) $\langle \Delta_a, \mathfrak{a}_a \rangle_{c_v} = \langle \Delta, \mathfrak{a} \rangle_{c_v}$ for $a \in A(k_v)$, i.e., it is invariant under translation.

The fundamental result of the paper of Néron [3] consists in the construction of a certain canonical $| \cdot v^-$ pairing $\langle \cdot, \cdot \rangle_v$. Thus we know that every unramified quasicharacter is admissible. Manin [1] showed that a certain ramified quasicharacter is admissible. Zarhin [5] proved that for any quasi character $c_v : k_v^* \to M$ (where M is an injective group) is admissible if and only if it is trivial on the values of the Weil pairing between the torsions of $A(k_v)$ and $A'(k_v)$ where A' is the Picard variety for A. We will explicitly construct an admissible pairing for a p-adic quasicharacter c_v satisfying the above conditions.

Let A be an abelian variety defined over a locally compact field k_v of characteristic 0 with a ring of integers \mathfrak{O}_v . Let \mathcal{A} be the Néron model of

A and let \mathcal{A}^0 be the identity component of \mathcal{A} . The Néron model of the dual variety $A' = \operatorname{Ext}^1(A, \mathbb{G}_m)$ is then $\mathcal{A}' = \operatorname{Ext}^1_{\mathfrak{D}_{\mathfrak{v}}}(\mathcal{A}^0, \mathbb{G}_m)$. Thus given a divisor Δ on A defined over k_v and algebraically equivalent to 0, we get a corresponding extension

$$1 \to \mathbb{G}_m \to \mathfrak{X}_{\Lambda} \to \mathcal{A}^0 \to 1.$$

Restricting to $Spec(k_v)$, we have an exact sequence

$$1 \longrightarrow k_v^* \longrightarrow \mathfrak{X}_{\Delta}(k_v) \stackrel{p}{\longrightarrow} A(k_v) \longrightarrow 1,$$

which splits over $A \setminus |\Delta|$.

Oesterlé showed that the homomorphism $c_v: k_v^* \to \mathbb{Q}_p$ can be extended to $\tilde{c}_v: \mathfrak{X}_{\Delta}(k_v) \to \mathbb{Q}_p$.

THEOREM 1.3 (Oesterlé [4]). There exists a continuous homomorphism $\tilde{c}_v: \mathfrak{X}_c(k_v) \to \mathbb{Q}_p$ extending c_v . If k_v is not a ultrametric field with characteristic p residue field then \tilde{c}_v is unique. If k_v is a finite extension of \mathbb{Q}_p then \tilde{c}_v is unique up to addition of the form $\varepsilon \circ p$, where ε is a continuous homomorphism of $A(k_v)$ into \mathbb{Q}_p .

We have a section $\sigma_{\Delta}: A \setminus |\Delta| \to \mathfrak{X}_{\Delta}(k_v)$ which is unique up to constants in k_v^* . We obviously get a canonical homomorphism

$$\sigma_{\Delta}: \{\mathfrak{a} \in Z_0(A)_{k_v}; |\mathfrak{a}| \cap |\Delta| = \varnothing\}
ightarrow \mathfrak{X}_{\Delta}(k_v).$$

Thus we have the map

$$\langle \ , \ \rangle_{c_n} : \{ \mathfrak{a} \in Z_0(A)_{k_n}; |\mathfrak{a}| \cap |\Delta| = \emptyset \} \to \mathbb{Q}_n$$

defined by $\langle \Delta, \mathfrak{a} \rangle_{c_v} = \tilde{c}_v \circ \sigma_{\Delta}(\mathfrak{a})$.

THEOREM 1.5. Let $c_v: k_v^* \to \mathbb{Q}_p$ be a p-adic quasicharacter which is trivial on the values of Weil pairing between the torsions of $A(k_v)$ and $A'(k_v)$. Then the pairing

$$\langle,\rangle_{c_v}:\{(\Delta,\mathfrak{a})\in D_a(A)_{k_v}\times Z_0(A)_{k_v};|\Delta|\cap|\mathfrak{a}|=\varnothing\}\to\mathbb{Q}_p$$

defined by $\langle \Delta, \mathfrak{a} \rangle_{c_v} = \tilde{c}_v \circ \sigma_{\Delta}(\mathfrak{a})$ is admissible.

PROOF. We need to check conditions of Definition 1.2. First, suppose that $\Delta = (f)$ is principal then $\sigma_{\Delta} = f$ up to constant. Thus

$$\langle \Delta, \mathfrak{a} \rangle_{c_v} = \tilde{c_v}(f(\mathfrak{a})) = c_v(f(\mathfrak{a})) \text{ since } f(\mathfrak{a}) \in k_v^*.$$

Second, since our section σ_{Δ} is additive in Δ and p-adic quasicharacter is a homomorphism, our pairing is biadditive. Third, to prove invariance under translation, let $a \in A(k_v)$ and $\mathfrak{a} = \sum n_i x_i$. Let a' be a point of \mathfrak{X}_{Δ} above a. Let τ_a and $\tau_{a'}$ be the translation by a and a' respectively. Then we can take

$$\sigma_{\Delta_a} = \tau_{a'} \circ \sigma_{\Delta} \circ \tau_{-a}$$
.

Hence for $a \notin |\Delta|$, we get $\sigma_{\Delta_a}(x_i + a) = a'\sigma_{\Delta}(x_i)$. Then

$$\langle \Delta_a, \mathfrak{a}_a \rangle_{c_v} = \tilde{c}_v \circ \sigma_{\Delta_a}(\mathfrak{a}_a) = \sum n_i \{ \tilde{c}_v(a') + \tilde{c}_v(\sigma_{\Delta}(x_i)) \} = \tilde{c}_v \circ \sigma_{\Delta}(\mathfrak{a})$$

since
$$\sum n_i = 0$$
. This proves invariance under translation.

According to Oesterlé, for v dividing p the extension \tilde{c}_v of c_v is not unique. Thus the above pairing may not be unique. Let c_v be a p-adic quasicharacter, and $\langle \ , \ \rangle'_{c_v}, \langle \ , \ \rangle''_{c_v}$ two admissible c_v -pairings. Then their difference $\langle \ , \ \rangle'_{c_v} - \langle \ , \ \rangle''_{c_v} = \tau$ is trivial if Δ is linearly equivalent to 0. Such pairings may well be nontrivial.

2. Global p-adic height over a number field

Let K be a number field, \mathcal{V} be the set of places of K and \mathcal{V}_0 be the set of finite places of K. Let I_K be the idèle group of K. A continuous homomorphism $c = \sum_{v \in \mathcal{V}_0} c_v : I_K \to \mathbb{Q}_p$ which is trivial on K^* and

unramified at all the places v but a finite set of (finite) places will be called a global p-adic quasicharacter.

Let A be an abelian variety over a number field K. A global p-adic quasicharacter c will be said to be admissible if each c_v is admissible in the sense of Definition 1.2. (Note this definition differs from that given in [2] p. 215.)

Choose a c_v -pairing $\langle \ , \ \rangle_{c_v}$ for each v. For a disjoint pair $(\Delta, \mathfrak{a}) \in D_a(A) \times Z_0(A)$, consider $\sum_{v \in \mathcal{V}_0} \langle \Delta, \mathfrak{a} \rangle_{c_v}$ which we often denote by $\langle \Delta, \mathfrak{a} \rangle_c$. Then triviality of c on K^* implies that $\langle \Delta, \mathfrak{a} \rangle_c$ depends only on the linear equivalence class of Δ .

Let $D \in D(A)$ be a divisor which is not necessarily algebraically equivalent to 0. Then for $a \in A(K), D_a - D$ is algebraically equivalent to 0. Hence $\langle D_a - D, (b) - (0) \rangle_c$ is well defined for all $a, b \in A(K)$. In fact if $D_a - D$ and (b) - (0) intersect then we can choose D' such that $D' \sim D_a - D$ and D' and (b) - (0) have disjoint support. But $\langle D_a - D, (b) - (0) \rangle_c$ depends on the linear equivalence class of $D_a - D$. On the other hand if D is algebraically equivalent to 0 then $D_a - D \sim 0$. Hence $\langle D_a - D, (b) - (0) \rangle_c = 0$.

DEFINITION 2.1. Let c be a global p-adic quasicharacter. Let δ be a element of a Néron -Severei group $NS(A)(=\frac{D(A)}{D_{\alpha}(A)})$ of A which is represented by D. We define a pairing

$$\langle , \rangle_{\delta} : A(K) \times A(K) \to \mathbb{Q}_{p}$$

by
$$\langle a,b\rangle_{\delta} \equiv \langle D_a - D,(b) - (0)\rangle_c$$
.

PROPOSITION 2.2. Using the above notation the pairing $\langle \ , \ \rangle_{\delta}$ is bilinear.

PROOF. We compute,

$$\langle a+c,b\rangle_{\delta} = \langle D_{a+c} - D,(b) - (0)\rangle_{c}$$

$$= \langle D_{a+c} - \dot{D}_{a} + D_{a} - D,(b) - (0)\rangle_{c}$$

$$= \langle D_{a+c} - D_{a},(b) - (0)\rangle_{c} + \langle D_{a} - D,(b) - (0)\rangle_{c}$$

$$= \langle D_{c} - D,(b) - (0)\rangle_{c} + \langle D_{a} - D,(b) - (0)\rangle_{c}$$

$$= \langle c,b\rangle_{\delta} + \langle a,b\rangle_{\delta}.$$

On the other hand, we have

$$\langle a, b + c \rangle_{\delta} = \langle D_a - D, (b + c) - (0) \rangle_{c}$$

$$= \langle D_a - D, (b + c) - (b) + (b) - (0) \rangle_{c}$$

$$= \langle D_a - D, (b + c) - (b) \rangle_{c} + \langle D_a - D, (b) - (0) \rangle_{c}$$

$$= \langle T_b^{-1}(D_a - D), (c) - (0) \rangle_{c} + \langle D_a - D, (b) - (0) \rangle_{c}$$

$$= \langle a, c \rangle_{\delta} + \langle a, b \rangle_{\delta}.$$

The last equality is true because $T_b^{-1}(D_a - D) \sim D_a - D$. Therefore our pairing is bilinear.

Let D be an ample divisor on A and $\delta \in NS(A)$ be represented by D and $a \in A(K)$. Then $D_a - D$ is algebraically equivalent to 0. We define

$$h_{D,c}(a) = \langle a, a \rangle_c$$

which we call a p-adic height. Then $h_{D,c}$ satisfies similar properties of Néron-Tate's canonical heights on abelian varieties.

PROPOSITION 2.3. Let A be an abelian variety over a number field. The $h_{D,c}$ satisfies the properties

(1) (Parallelogram Law) For all $a, b \in A(K)$,

$$h_{D,c}(a+b) + h_{D,c}(a-b) = 2h_{D,c}(a) + 2h_{D,c}(b)$$

- (2) For all $a \in A(K)$ and $m \in \mathbb{Z}$, $h_{D,c}(ma) = m^2 h_{D,c}(a)$.
- (3) If a is a torsion point then $h_{D,c}(a) = 0$.

PROOF. (1) and (2) follow from bilinearity of $\langle , \rangle_{\delta}$. For (3), suppose ma=0. Then we have $0=h_{D,c}(ma)=m^2h_{D,c}(a)$. Now our assertion follows from divisibility of \mathbb{Q}_p .

Our bilinear form $\langle \ , \ \rangle_{\delta}$ induces p-adic height and conversely a p-adic height $h_{D,c}$ induces a bilinear form which can be easily deduced by using linear algebra.

Lemma 2.4. $\langle a,b\rangle_{\delta}=\langle b,a\rangle_{\delta}$, i.e., this bilinear form is symmetric.

PROOF. Let
$$a = (a) - (0), b = (b) - (0), D_a = D_a - D, D_b = D_b - D,$$

$$\begin{split} \langle a,b\rangle_{\delta} &= \langle D_a-D,(b)-(0)\rangle_c \\ &= \langle D_{\mathfrak{a}},\mathfrak{b}\rangle_c = \langle D_{\mathfrak{b}^-},\mathfrak{a}^-\rangle_c \\ &= \langle \bar{D}_{\mathfrak{b}},\mathfrak{a}\rangle_c \quad \text{(by using reciprocity law)} \\ &= \langle \bar{D}_b-\bar{D},\mathfrak{a}\rangle_c \quad \text{Since } D-\bar{D} \equiv 0, (D_b-D) \sim (\bar{D}_b-\bar{D}) \\ &= \langle D_b-D,(a)-(0)\rangle_c \\ &= \langle b,a\rangle_{\delta}. \end{split}$$

THEOREM 2.5. Let D be an ample divisor and δ be the element of NS(A) which is represented by D. Then we have

$$\langle a,b
angle_{\delta}=rac{1}{2}(h_{D,c}(a)+h_{D,c}(b)-h_{D,c}(a-b)).$$

PROOF. We have

$$\langle a, b \rangle_{\delta} = \langle D_{a} - D, (b) - (0) \rangle_{c}$$

$$= \langle D_{a} - D, (b) - (a) + (a) - (0) \rangle_{c}$$

$$= h_{D,c}(a) + \langle D_{a} - D, (b) - (a) \rangle_{c}$$

$$= h_{D,c}(a) + \langle D_{a} - D_{b}, (b) - (a) \rangle_{c} + \langle D_{a} - D, (b) - (0) \rangle_{c}$$

$$= h_{D,c}(a) + \langle D_{a-b} - D, (0) - (a-b) \rangle_{c} + \langle D_{b} - D, (0) - (a) \rangle_{c}$$

$$= h_{D,c}(a) + h_{D,c}(b) - h_{D,c}(a-b) - \langle b, a \rangle_{\delta}.$$

Since $\langle \ \rangle_{\delta}$ is symmetric, $\langle a,b\rangle_{\delta}=\langle b,a\rangle_{\delta}$. Hence

$$2\langle a,b\rangle_{\delta} = h_{D,c}(a) + h_{D,c}(b) - h_{D,c}(a-b).$$

Therefore we have

$$\langle a,b
angle_{\delta}=rac{1}{2}(h_{D,c}(a)+h_{D,c}(b)-h_{D,c}(a-b)).$$

References

- [1] J. Manin, The refined structure of Néron-Tate height, Math. USSR. Sb. 12 (1970), 325-342.
- [2] B. Mazur and J. Tate, Canonical height pairing via biextentions, vol. 35, Arithmetic and Geometry, Progress in Math., Birkhäuser, Boston, Besel and Stuttgart, 1983, pp. 195-273.
- [3] A. Néron, Quasi-fonctions et hauteurs sur les variétés abeliennes, Ann. Math. 82 (1965), 249-331.
- [4] J. Oesterlé, Construction de hauteurs archimediennes et p-adiques suivant la methode de Bloch, vol. 22, Seminaire de théorie de nombres, Paris (1980-81), Progress in Math., Birkhäuser, Boston, Basel and Stuttgart, 1982, pp. 175-192.
- [5] J. G. Zarhin, Néron pairing and quasicharacters, Math. USSR. Izvestija 6 (1972), no. 3.

Department of Mathematics Ewha Womans University Seoul 120-750, Korea E-mail: shimkah@hanmail.net

sswoo@mm.ewha.ac.kr