Abstract
A sliding friction and wear test for silicon nitride (Si,N4) was conducted using a ball-on-disk specimen configuration. The material used in this study was HIPed silicon nitride. The tests were carried out from room temperature to 1000$^{\circ}C$ using self-mated silicon nitride couples in laboratory air. The worn surfaces were observed by SEM and the debris particles from the worn surfaces were analyzed for oxidation by XPS. The normal load was found to have a more significant influence on the friction coefficient of the silicon nitride than an elevated temperature. The specific wear rate was found to decrease along with the sliding distance. The specific wear rate at 29.4 N and 1000$^{\circ}C$ was 292 times larger than that at room temperature. The main wear mechanism from room temperature to 750$^{\circ}C$ was caused by brittle fracture whereas from 750$^{\circ}C$ to 1000$^{\circ}C$ the wear mechanism was mainly influenced by the oxidation of silicon nitride due to the increased temperature. The oxidation of silicon nitride at a high temperature was a significant factor in the wear increase.