Analysis of Expander Network on the Hypercube

Lee, Jong—Keuk*

ABSTRACT

One key obstacle which has been identified in achieving parallel processing is to communicate effectively
between processors during execution. One approach to achieving an optimal delay time is to use expander
graph. The networks and algorithms which are based on expander graphs are successfully exploited to
yield fast parallel algorithms and efficient design. The AKS sorting algorithm in time O(logN) which
is an important result is based on the use of expanders. The expander graph also can be applied to construct
a concentrator and a superconcentrator. Since Margulis found a way to construct an explicit linear expander
graph, several expander graphs have been developed. But the proof of existence of such graphs is in
fact provided by a nonconstructive argument. We investigate the expander network on the hypercube
network. We prove the expansion of a single stage hypercube network and extend this from a single
stage to multistage networks. The results in this paper provide a theoretical analysis of expansion in
the hypercube network.
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. Introduction

structures, the most powerful interconnection

In order to route N streams of information
efficiently in parallel computer, it is necessary to
construct a network with N disjoint from source
to destination. Since parallel computing can employ

a wide range of parallel algorithms and data
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scheme is one that can accommodate arbitrary
source destination pairings for all N information
streams. One way to build such an interconnection
is to use a superconcentrator to divide the input
stream into two output parts, then recursively
divide each part of the output with two additional
superconcentrators, and so on until each stream
has been connected to its specific destination. A

simple structure which can readily be applied to



the task is the Benes network, which is difficult
to route point-to-point[1], but which is easy to
route as a superconcentrator{2]. The difference is
that superconcentrator does not require that
specific source-destination pairings be establish,
only that each input be connected to one of the two
output streams.

Pippenger{3] ,Valient[4] and Pinsker[5] showed
how to build as superconcentrator by using the
concentrator in both input and output side. Gabber
and Galill6] have introduced a family of bipartite
structures call expanders, which can be used to
build such concentrators. Thus, the expander graph
is the key building block to construct such a
concentrator, superconcentrator and routing net-~
work. Recently, Leighton and Maggs[7] showed
that a randomly generated concentrator-based
splitter network can be constructed with efficient
routing properties and also Orug and Guol8] built
a single stage sparse crossbar concentrator using
bipartite graph.

The hypercube network is one of the most
versatile and efficient networks yet discovered for
parallel computation[9-11]. The focus of research
is to investigate the expansion properties of the
hypercube network in order to develop communi~
cation methods for parallel processor systems.

2. EXPANDER GRAPHS

The Expander graph[12] is defined by a bipartite
graph. A bipartite graph G(I, O, E) has a set I of
inputs, a set O of outputs, and a set E of edges
which connect between inputs and outputs in Fig.1
(usually consider | I} = | O} = N). For any
subset X of input nodes, we define a subset of
output nodes I{X). Each node in I{X) should
have at least one edge which is connected to a node
in subset X. If the degree of every node in the
graph G is the same, then we say G is a k-
regular bipartite graph. For 0 < a < 1, 8> 1,
and [I] = {0l = N, a k-regular bipartite G(I,0,E)
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k-regular bipartite graph

1 k 1

2 q— 2
Inputs E Outputs
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N N

Fig. 1. (k,a,B8) Expander Graph

is called a (k, 2,8 expander if, for all X C [ so
that |X | < aN, I(X) in a set of output nodes
is such that |I(X)| = AX]. Here, 8 is called the
expansion factor in the expander graph. In an
expander graph, the number of output nodes, I(X),
is always larger than the number of input nodes,
X.

The expanding property can be applied to in-
teresting computation and communication properties.
It also offers the means of realizing communication
problems without storage capacity. Multiple con-
nectivity between the processing elements provides
the necessary redundancy for fault-tolerant com-
munication networks. The proof of existence of
such graphs is in fact provided by a noncons—
tructive argument. In this proof it is argued that
the fraction of the graphs which do not satisfy the
condition of the expander property is less than 1
when each side has N nodes with a uniform
distribution with degree k. Therefore, certain gr-
aphs of degree k must exist that meet the given
expansion property. Alon{13] proved this expansion
property using the entropy function.

£ H(o)+ H(1 —a)

H(@— (1~ )i(1=9)

Where H(a) =—alog(a)—(1—a)log,(1—a).
Then, with probability approaching 1, as N goes

1—a
o

to co, (Gis a (k a, ) expender.
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Margulis{12] found a way to construct an explicit
linear. expander, but his result was deficient in that
he could not give an exact value for the expansion
factor. From Gabber and Galill6], an (N, k&, d)
expander is a bipartite graph with N inputs and
N outputs and at most kN edges, such that for
subset X of inputs the subset I(X)1 of outputs
satisfied.

Ir (X1zl1+d Q-(x1/M] 1X1, .y

where I'(X) is the set of outputs connected to X.

The expander from Gabber and Galil consists of
a set of N inputs when N= M?, where M is any
integer, and an equal number of outputs. He found
explicit construction for a family of (N,5,d) ex-
panders with d=(2-V3)/4 as well as a family
of (N,7,d) expanders. The inputs are connected to
the outputs by a set of seven permutations, which
shift each row right or left several columns, with
wrap-around. Alon, Galil and Milman[14] improved
the expander factor in the same permutation of
Gabber and Galil.

3. SUPERCONCENTRATOR BASED ON
EXPANDER

we describe a concentrator and show how to
build a superconcentrator with it. An (N, 6 ,k) con-
centrator is a two-stage connection network, with
N inputs, #N outputs, at most kN links from the
inputs to the outputs, having the property that, for
every set of inputs X such that | X <N/2, all inputs
in the set X can be one-to-one connected to the
outputs. Since 6 <1, this property guarantees that
a stream of at most N/2 active inputs can be
connected to the output stream along disjoint
paths, while (I-6)N of the unused inputs are
disconnected from the & N outputs.

In order to construct a superconcentrator from
this structure, following Pippenger[3] we build a
network with N inputs and an outputs, with a direct

connection from each input to a corresponding

output. In order to superconcentrate a set of inputs
I to a set of outputs O where | I =101, connect
any inputs in [ to any output in O that happens
to be linked by the direct connection. If (1| > N/2,
then at most N/2 of these inputs will fail to link
using the direct connection. These are then passed
through an (N, 8,k) concentrator, while on the
output side a mirror image structure feeds the
outputs. Between these two structures, a recursion
of the entire superconcentrator structure is im-
plemented, but with 8 N inputs and 6 N outputs.
This structure is illustrated in Fig. 2.

For example, applying this formula to Pippenger’s
(N,2/3,6) concentrator yields S(N) = 39N, Because
of the restriction that N must be a multiple of 6,
Pippenger found a slightly higher value of S(N) =
40N. Excluding such minor restrictions the formula
i1s exact. In order to build such concentrators ex-
plicitly from expanders, we now define an expander.
An (N, k, d) expander, as used in the context of
this paper, is a two-stage network with N inputs,
N outputs, with each input connected by links to
k outputs. The links are chosen in such a way that,
for every set of inputs X, such that | X|< N/2,
the set of outputs "X which are connected by
links to X, is larger than |X| by a factor C > 1.
For the expanders currently studied, Cis given by:

AL ol o1 -] = c

In other words, the inputs are connected to more
outputs by an amount C fixed by d as used in
the above formula. The hardware complexity of
this structure is determined by the total number

¢ : concentrator

—_— i
direct connection

recursive structure

a
I direct connection
v v

$
N\l v

direct |[ <
.

Fig. 2. A superconcentrator built with concen-
{rators.




of links, which is kN.

The concentrator built from this expander is the
union of two parts, called Part A and Part B, as
shown in Fig. 3. Part A is an ( | Y% | kd)

g+1
expander, Part B has | 71:_[’1 I inputs, with each
input connected to g disjoint sets of the | q_]\:—gl_ ]

outputs of the expander. N’ is chosen so that:

Ng N
N= | q+11+i q+1J

As N becomes large, N'-N becomes small, so
we will assume N’'~N. For a specific range of
values of the concentration coefficient g, ¢ =1+2/d,
this structure is an (/V, 7_% k) concentrator. The
concentration property is guaranteed by Hall's

Matching Theorem,

INg/lq+1), k, 244+ 1)q-1)]

Fig. 3. The concentrator composed of twa different
sized parts.

4. EXPANSION ON THE HYPERCUBE

The hypercube network is one of the most
versatile and efficient networks yet for parallel
computation, as discussed above. The research
focuses on investigating the expansion property on
the hypercube network to find optimal algorithms
for the hypercube. Also we demonstrate a new
method of showing expansion in a network that

might be applied to other networks.
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This research consists of three parts. The first
part is to prove the expansion property on the
single stage hypercube and to find the total number
of expanded outputs for given inputs. The second
part is to extend a single stage to multistage. In
the third part we analyze these properties of
expansions and find the number of stages needed

to achieve a constant expansion.

4.1 Single Stage Expansion on the Hy-
percube

From the bipartite graph with identity and logN
connections between the input vertices I and the
output vertices O where |7 |=1]0 |, consider a set
of binary numbered input vertices X where
X | =x < N/2 Each input vertex hart an identity
edge and hypercube connections. If all the edges
from X lead to Y then X [<]Y].

From Fig. 4 define X to be any subset of the
first N/2 inputs, and I'y,(X) to be that subset of
the first N/2 outputs which are connected to X.
Define Y as any subset of the second N/2 inputs,
and I'yy(Y) as that subset of the second N/2

outputs which are connected to Y, and let

o o— r ——® 0
] ® N2 ® .
X Iy, (X)
N2-1 g N2-1
°© &— —e o
1 1
Y Fn(Y)
Ni2-1 @ | QN N/2-1

Fig. 4. An expander network built from two half
size hypercube networks.
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2=1Xl,y=, 7up(®) =Ty (XD, and yaply)=
IMnp(Y)| Due to symmetry of the structure the
case of x2y will be considered by choosing X
accordingly. Note that X also projects an identity
image X» onto the second half of the outputs,
where | X3 | = x. Similarly, Y projects an identity
image Y) onto the first half of the outputs, where
| Yil=y.

Let us assume that for each such X, there exists
Y for Which X, €& Iy (Y). Also, for this Y,
assumethat Y, S I'yp(X). Assumethat 7 pp(X)
is a convex function, and monatonically increasing
for all x. Consider the case of a set of inputs Z
where Z = X U 'Y, and |Z| = z The outputs set
for inputs Z is

(2 = Iyp(OU v Ury,(mUx,

and expansion is:

7N(Z)='FN/2(X)U YlH‘,FN/z(Y)UXz} (2)
If z=x so that y=0, then I'y(Z)= I'yp(X)
U X, and expansion is':

rnQ)= VN/z(X) +x (3)

Now since. 7 is a monotonically increasing func-
tion, if x>y then yy,(x) = | Y, and for y
sufficiently small y 5, (3) < | X,|. Thus the small-
est value of y,5(2) occursifs Y,C I'yp(X) so
that | Fap(X)U Yil= 7xp(x), and (D E
X, so that | Pyp (VU X I=x. Thus

(@) 2 v up(x) +x

It follows that as x is decreased by shifting in
Z from X to Y, yy(2) is also decreased, until
7w () 2x.

Theorem 1 [] For an arbitrary number of input
nodes z = X + y and X 2 vy, the minimum of output
nodes is yy(2)= yyp () + 7pp(¥) forx andy.

Proof) From Fig. 4, we first add a node to X
recursively until 7y2(»)2x. Assume the first
node is selected in the first half block and we
always choose a second node which has the same

node number with the first node among the second
block.

This procedure should be done recursively until

ya2(¥)2x. The first half block is divided into
two blocks with half size and a node is selected
which is the same node

number in the block among the second block.
Therefore the identity images, X> of a set of X
which is projected into the second half, should be
contained by I'y;(Y), because X is a set of
elements which is different in only one bit position
in the first half. So,

Vi€ Mpp(X) and X3E Iy (V).

T (XU Y= Iyp(X)
and

Typ(MHU X,= I'np ()
and

I'n(2)= I np ()()U FN/Z(Y)and rn(2)

= rne(®D+ rae ()

If 7n2(3)=x then we do the same procedure
recursively for Y in the second half block until X
=Y. From X=Y, I'ypy(Y)2 X, and Myp(X)=2
Y, are still satisfied.

Therefore, the 7 n2(2) can be divided into 7 n2
{x) and 7 ne(y). The 7np(X) and 7 np(y) are
independent of each other and divided into two
blocks independently again. When N=2, 7y 2(1)=2
and 7 2(2)=2 is the minimum ohviously. So, 7 n(z)=
7 n2{x)+ 7 nely) should be minimum. [

Theorem 2 [] The total Nodes N =2" and for
arbitrary k between 0 and n -1, given the number
of inputs, z, when z=x+ y, in order to get the

minimum of 7 ~2(2), x and y can be chosen by the
following:

- if 220( ";1)@32’20( n;1)+( n;l)
Then, x=2— 5, "7 1).y= S @

) (e BT

("_.1), y=z— g(”:l) (5)

1 0

Then, x= f

=0



Proof) Given total N=2" nodes and x = y, we

know that :
rn(2= 7D+ 7ap(¥)

We can divide into two groups. Define group y (k&)
and group y(k) according to z. When x is in-
creased with fixed y in total nodes N, we say that
z is in group y{k). It is in Eg.4 of the Theorem.
When v is increased with fixed x in total nodes N,
zisin group y(¥) . It is in Eq.5 of the Theorem.
The | group y(#)| is the number of elements in

group (k) and| group y(B=| group (K. If 2
= ] then this is obvious, x = 1, y = 0. This will
be the group y(0). If z=2thenx=1andy =1 will
be one of the solutions to keep the minimum num-
ber of output nodes 7 y(2)= 7 n2 () + ¥a2(y).
This is the group x(07).

| group n(0)| =1 group y(0)=1. when y = 1,
then ¥ ns{(y=1)=logN/2+1. That means we can
increase the number of x in first half block until
x= ryly=1) with X,E I'yp(y=1)
tioned from Theorem 1). let’s call the nodes from

as  men-

x =2t x= yy(y=1) group »(1). Now, we can
apply this process for y in the second half from
Fig.4; that is, y can be increased until x = y instead
of x without violating the previous condition to
keep minimum yy{(2). It will be x = y = log N.
This will be called group 5(1') fromy = 2 to y
= x. The groupy(1) and group y(1') have log
N/2 elements.
When N= 2", | group (k)| is :

[ group n(n—DI= 7y rne( rap - Crap (D)) ay

— 7 CranCoCrap (D)) - (6)

where 7 v yap (7 ap (1)) ,o1=N/2.

Subscript "n-1" means that 7y, is repeated n

times recursively.
In case of 2N= 27*!:
| groupsn(ml= ynC rnCyn-Cru())) n—
yal rnCGoCrnD)) 4o, "

For arbitrary % (0<k<n), We can get that:
| group sn (B = group y(k— DI+ group y(B)] (8)
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| group on(n— =1 group y(n—2)|
+| group n(n—1)|

When N = 2 there is only one group, group;{(0)
and group,(0’) and y,(1)=2 is obvious. Each
half of the group has one element. When H = 4
there are two groups, group,(0), group,(0’) and

group (1), group,(1’). These groups have one

element.
| group . (D)l =1 group 4 (0"} = ((1)) =1 ¢)
| group (DI =1 group, (1)1 =(}) =1 (10)
From Eq.8, Eq9 and Eq.10,
(2 =02+ () ay

Therefore

=31 group (D= 7u yu( 7y 7a(DN=) 5,

_&tin—1
=57
For group y(E), we can get the same results

because of | group (k)| = group y(¥')|.
So,

=1
x= /ZO group (D= yn( rn(ry yu(N) vy
_A m—1

_zo ( 7 )

In addition, the summation of all elements in

groups should be N=2".

2} lgroupN () + :zo lgroupN (i’

7=

- 9. 'S'j (72—1) _on

1= 1
Thus, theorem 2) is proved by Eq.6 and Eq.11.[]

Theorem 3 [JIf z is i}o ("7 7) thenx = };‘0

(n—z(ﬂ) and y = ‘2 (n—:j—l)'
That is:

BT e B
(ST
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where (<k<n—1 and k=n—7r—1.

Proof) '
120(7;77’) _ 2_,Z)(n;r)+(n—;’—1)
From Theorem 2), x and v should be:

y = E(ln—’.'_l) and x = i(n—.r)

=0 1 =0 1

_ ’i‘(n—y»l)

=0 ?

and

= zo(n—f_’—l> + %(n—(ﬁl)_

? =0 [

g

=0 [

So, we can get x = i(n_’.,_1> -

= 7

Thus, to find minimum 7 . (2) = 7 g (20 +,
¥ mp(y), After repeating n times, this equation
can be simplified by following :

2-["2‘("?1) yN/Zn(kgl(”;"))] (12)

7=0\ 7

Here

if @>0, then 20(”;")=1, and 7, ,-(1)=1 (13)

if @=1, then g:o(”;") —0, and 7 2-(0)=1 (14)

if @ <-1, then 7y,(-)=0 (15)
Solve Eq.12 using Eq.13, Eq.14 and Eq.15

~ 9. ,20("?1) 16)
If zis 2 g(":l)Jr(n;l) then z should be
divided into :

T e o= BT

1=0 1 o=0 1

From Theorem 2), after repeating n times :
- =01 VN/z"(bZ_OI("7")) an

=0

Therefore we can get y y{(z) when z=2- 2("7”
+(";1) from Eq.17 using Eq.13, 14 and 15,

o= E(1) =2 B3+ (G51) 09

Let z be:

2=2- ‘Z:)(n7l)+A (19)

A should be in 0<A£(";1) from Theorem 2)

(") =" G5

We can get yxn(2) when A is given by the
following :
A=)+ o)+ God) -+ (00)

N ) (20)

where 2 = p < n-k+1

The previous equation can be simplified like the
following one:

rva=2 57577
+...+(”;P)
=2 BRI e
Ifp=n-k+ 1, Eq2l is:

ra(2)=2- JZO("“. ar "*fl(n—é—z)

7 =0
=2 B+ e) @)

We can get the same result with Eq.18.

4.2 Muitistage Expansion on the Hypercube

To extend from single stage to multistages
consider two stages as shown in Fig.5 and in-
vestigate that a two stage network has the same
properties that a single stage has.

Theorem 4 (1 If I'yp(X) and 'y, (Y) are
independent of each other, that is, I'yp(X)2 Y,
and T'y,(Y)2 X, from Theorem 1), then I'yp
( I'np(X)) and Iyp( Typ(Y)) are also inde-
pendent of each other as shown in Fig. 5; that is,

T Pap(XN2 Yyand Tap( Dap{Y)2 Xy
where X," and Y, are the identity images of

T'yp(X) and I'yp(Y) onto the first half block
and the second half block at the second stage.

Proof) From Theorem 1, X 2 Y and I yp(X)



2 yp(D. So, Typ( yup(X))2 Fyp(Y)
I ynp(XN2 Y (23)
where Y, is the identity image of I'y,(Y) on
the first block. On the second half block,
I'y(N=2 X,
P Tap(YN2 Fyp( X ) (24)
X5 is the identity image of X on the second
block. So, we can say that :

IFnp( X9) = T'yp(X) (25)
O— | 0
0 I.N/Z I-N/Z
1 O— !
x [ Iy, [T (TG00
/ I
N/2-1 O— 1 N/2-1
o o— - 0
1 o N/ —-— 1
’2
Y |: [ ( T, (Tra (YD)
N2-1 O— - N/2-1

Fig. 5. A two stage expander network built from
combining two hypercube

From Eq.24 and Eq.25 :
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X at the first stage outputs and Iyp(Iap (X))
is the set of the second stage outputs for Iy(X) .
If the input, X, is a set of input nodes to keep the
minimum output nodes that are connected with X,
then I'np(Y)2X,; and TIyp(Y)2X. The maxi-
mum node number of a set, X, is yys(») in the
first half block according to Theorem 2. This
means that I'yy(Y) = X,. In Fig. 4, X, has the
same set as the set of input nodes, X. So:

Iyp(N=X;=X (28)

Therefore from Eq.28 and Theorem 4, I'yy(Y)
is a set of nodes in the second half block to keep
the minimum number of output nodes, I'nq(I'njp
(Y)). This is the same for Iy,(X) . [

The total minimum number of nodes which is
connected to input z after two stage’s expansion
can be obtained like Eq.16, 18 and 21 from Theorem
4 and Theorem 5.

If the number of nodes in a set Z is given as:
. g (n—1
2=2 2}( ; ) (29)
the number of output nodes at the second stage
is:

rlrd2)=2" Zj()(n;l) (30

Let s be the number of stages and y°y(2) be
the number of expanded outputs from any z inputs

of an N node hypercube after s stages of expansion.

DT (1)) 2 y(X)
, Therefore y°y(2) is:
T Typ(Y)) 2 X, (26) e
s = —9. v n‘jl
Therefore rin@=ralrCs ru(@) =2 120 ( ) )
TITy(2)) = T T X)) U ¥ Uy D Y)Y U XY 31
= Ty Tra (3O + [Ty T 1)) 1 When z is given as in Eq.19 and A is given as

Theorem 5 {_] Given Z inputs, X in the upper
half, Y in the lower half, such that the minimum
number of output connections from the first stage
is I'M2) =T X)+ (Y)Y then Irp(Typp (X))

+ Dyyp{ Doz ( V)) is the minimum number of output
connections in the second stage.

Proof) I'yp(X) is the minimum connection for

in Eq.20, yn( yx(2)) at the second stage is:
=2+ 5"+ B (717?) @

4 7=0

5. ANALYSIS OF EXPANDER

When N=2", the outputs, y»{(N/2) at input
z=N/2, are very significant for expander.
yM(N/2) is:
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When n is even
n2=1
_ _o. n
2=N/2=2 So(z')
Therefore the total number of output nodes at
N/2 inputs from the Eq.l6 can be given by
substituting n/2 for k

__nn—1 . n—1
TN/ =2"" 52 ( " ) (33)
Eq.33 can be written as:
__on—1 n'
S e N TN CTO (34)
When n is odd
n~1 1

2=N[2=2" 20 <?)+<(n—nl)/2)

Therefore the total number of output nodes at
N/2 inputs from the Eq.18 can be given by
substituting (n—1)/2 for k.

—on—1 n
yMN/2)=2""" + nt1 (35)
2
Total number of outputs when n is odd:
__on—1 n!
TN =27 T (36)
2 2

An (n,k,d) expander has n inputs and outputs
and kn edges such that for every subset z of inputs:

D =[1+d(1—-5)] 2
=zt+dl-—5)- 2 (37)

From this equation, the second term d(1—z/
N) - z indicates how many more nodes can be

connected to the input nodes. d is the expansion

constant.
At z=N/2, d is:
M N/2)=[1+1/2-d}- 2
o rMN/2)
d=2- (»—N/2 1) (38)
From Eq.34 we can derive the expansion
constant, d.
_ n!
d= 2n*2 R (n/2')2 (39)

We are going to examine Eq.39 when n goes to
infinity. From Eq.39, n! can be approximated based

on Stirling’s Formula:

nl=n"-e "-V2mm, n—INF

Using Stirling’s Formula, Eq.39 can be rep-
resented by the following :

g=4-Y2 (40)
Tn
From Eq.37, when n is odd, d is:
___ 42
d VAot D (41)

Orlet 8,= L’;@ . From Eq.34, By is given by
approximation using Stirling’s Formula as n

grows large.

ro(N/2) 93

When n is odd:
_ yMN/2) 93
ﬂN/Z_ N/2 - \/”(n+1) +1 i (43)

Let us approximate the hypercube expansion

into Eq.37 of Margulis when n is even (N=2")
and yp(2) <N/2. We know that when

M2 = 2- "‘Sol(";l):zwz
From Eq.42

2"*1:z+d(1—%)~z

and
_ gznfl_z)_zn .
d "2 -2 (44)

z can be rewritten as:

z=2" n&ﬁ("fl)

=0 [

—grt___nl (45)

Using Stirling’s Formula:
Vo -e " n'<nl<Vomn-e " - n"- VU

approximate the d value into the minimum from

Eq.45.
From Eq.45 the second term is:
n! __n" e " Vo - NI
myny (e " meome
227



- Rz (46)
Therefore
=2t T
Eqg.44 is:
. [2“*‘42"'17772"%/;‘—%,;)]-2"

T on o o) " 232
[2" ' =(2 1“7%;;%;)]'(2 l—m)
4-V2rn - 21/4” (47)

,
ron- en—g

Therefore

4-V2mm - e’

- e]/(?n)_S

7(2) 2 [1+ (1-2/N)] - 2

n2=2,
where z2< (” ; 1)
~

ri{2) is always greater than the total number
of output nodes which is calculated by Margulis’s
equation using the d in Eq.47 when

2= "ng(”l‘l) )

i
6. CONCLUSIONS

In this research we proved that the hypercube
network has expansion properties. In single stage

expansion, ypz) is given by:
=2 BT for 2=z F(" 1)
it e=2- H("71)+ (00
ma=2- 2"+ Y

where 2<p<n—Fk—1.
When the input, 2is N/2 the minimum number

of output nodes, i 2) is given by

2! +-———~7( n/2)?(!n/2)! for even and

71 n’
2"+ (DD ((n= D/ for odd were
verified by computer simulations. For example
when N=2'%(1.267x10%¥) the number of the
output nodes is 0.7347x10™. The d value at N/2
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is decreased as the total number of nodes increases.
When N is 2%, the 4 is around 05, and
d=0.31835 for N=2". After approximating d
using Stirling’s Formula as n grows large, d is:

42

“Vn
These properties of expansion will be the basis
of applying a concentration or a superconcentration
on the hypercube network derived from the

hypercube network.
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