The Study on Information-Theoretic Measures of Incomplete Information based on Rough Sets

러프 집합에 기반한 불완전 정보의 정보 이론적 척도에 관한 연구

  • 김국보 (대진대학교 컴퓨터공학과) ;
  • 정구범 (상주대학교 컴퓨터공학부) ;
  • 박경옥 (삼성전자(주) 디지털프린팅(사))
  • Published : 2000.10.01

Abstract

This paper comes to derive optimal decision rule from incomplete information using the concept of indiscernibility relation and approximation space in Rough set. As there may be some errors in case that processing information contains multiple or missing data, the method of removing or minimizing these data is required. Entropy which is used to measure uncertainty or quantity in information processing field is utilized to remove the incomplete information of rough relation database. But this paper does not always deal with the information system which may be contained incomplete information. This paper is proposed object relation entropy and attribute relation entropy using Rough set as information theoretical measures in order to remove the incomplete information which may contain condition attribute and decision attribute of information system.

러프집합에서는 식별불능관계와 근사공간 개념을 이용해서 불완전 정보로부터 최적화된 결정규칙을 유도하게 된다. 그러나, 처리 하고자 하는 정보에 정량적이거나 중복 또는 누락된 데이터가 포함된 경우에는 오류가 발생될 수 있으므로, 이러한 데이터들을 제거하거나 최소화시키는 방법이 필요하다. 정보처리 분야에서 불확실성이나 정보의 양을 측정하는데 사용되고 있는 엔트로피는 러프 관계 데이터베이스의 불완전 정보를 제거하는데 사용되었다. 그러나, 정보시스템에 포함될 수 있는 불완전 정보를 모두 다루지는 못하였다. 본 논문에서는 정보시스템의 조건속성과 결정속성에 포함될 수 있는 불완전 정보를 제거하기 위한 정보 이론적 척도로서 러프집합을 이용한 객체관계 엔트로피와 속성관계 엔트로피를 제시한다.

Keywords