Segmentation of MR Brain Image Using Scale Space Filtering and Fuzzy Clustering

스케일 스페이스 필터링과 퍼지 클러스터링을 이용한 뇌 자기공명영상의 분할

  • Published : 2000.08.01

Abstract

Medical image is analyzed to get an anatomical information for diagnostics. Segmentation must be preceded to recognize and determine the lesion more accurately. In this paper, we propose automatic segmentation algorithm for MR brain images using T1-weighted, T2-weighted and PD images complementarily. The proposed segmentation algorithm is first, extracts cerebrum images from 3 input images using cerebrum mask which is made from PD image. And next, find 3D clusters corresponded to cerebrum tissues using scale filtering and 3D clustering in 3D space which is consisted of T1, T2, and PD axis. Cerebrum images are segmented using FCM algorithm with its initial centroid as the 3D cluster's centroid. The proposed algorithm improved segmentation results using accurate cluster centroid as initial value of FCM algorithm and also can get better segmentation results using multi spectral analysis than single spectral analysis.

의료 영상은 환자에 대한 해부학적인 진단 정보를 얻기 위한 영상으로 정확한 병변 인식과 판단을 위해서는 조직별 분할이 선행되어야 한다. 본 논문에서는 T1 강조 영상 그리고 T2 강조 영상, PD 영상의 특징을 상호보완적으로 이용한 자동적인 영상 분할 방법을 제안한다. 제안한 분할 알고리듬은 PD 영상으로부터 대뇌마스크를 획득하고, 대뇌마스크를 T1 과 T2, PD의 입력 영상에 씌워 각각의 대뇌 영상을 획득하여 T1과 T2, PD를 축으로 하는 3차원 공간상에서 스케일 스페이스 필터링과, 3차원 클러스터링을 이용하여 대뇌 내부조직에 해당하는 클러스터를 찾아서 분할에 이용한다. 대뇌 영상분할은 이들 클러스터의 중심 값을 FCM 알고리듬의 초기 중심 값으로 두고 FCM 알고리듬을 이용하여 분할한다. 제안한 분할 알고리듬은 정확한 클러스터의 중심 값을 계산함으로 초기 값의 영향을 많이 받는 FCM 알고리듬의 단점을 보완하였고 다중 스펙트럼 영상의 특성을 조합하여 분할에 이용함으로 단일 스펙트럼 영상만을 이용하는 방법보다 향상된 분할 결과를 얻을 수 있었다.

Keywords