Indicative Responses of Rice Plant to Atmospheric Ozone

  • Hur, Jae-Seoun (Department of Environmental Education, Sunchon National University) ;
  • Kim, Pan-Gi (National Instrumentation Center, Environmental Management, Seoul National University) ;
  • Yun, Sung-Chul (School of Agricultural Biotechnology, Seoul National University) ;
  • Park, Eun-Woo (School of Agricultural Biotechnology, Seoul National University)
  • Published : 2000.06.01

Abstract

Differences in physiological and biochemical responses between sensitive and tolerant rice cultivars to ozone were investigated to develop reliable indications of early ozone damage. Three Korean local rice cultivars -sen-sitive cultivar Dongjin (DJ), moderately tolerant cultivar Hwayeong (HY) and tolerant cultivar Ilmee (IM) were exposed to ozone at the concentrations of 100 nl $\textrm{l}^{-1}$ or 200 nl $\textrm{l}^{-1}$ , 8 h per day for 10 days in a controlled-environment fumigation chamber. The rice cultivars seemed to be endurable to ozone stress at the concentration of 100 nl $\textrm{l}^{-1}$ which is frequently monitored during the growing season in summer. However, severe damage was induced and differential sensitivity was clearly noted among the rice cultivars at the higher ozone concentration. Activation of the glutathion (GR) -ascorbate peroxidase (APX) cycle was likely to be responsible for protection of rice plants against ozone exposure, relating difference in sensitivity of rice cultivars to ozone. Photosynthetic activity appeared to be one of sensitive responses, for which chlorophyll fluorescence and leaf greenness can together provide a very reliable index, a degree of photosynthetic damages by ozone. Formation of malondialdehyde (MDA) was also considered as an indication that can differentiate cultivars sensitivity to ozone. However, the changes in polyamines and total phenolics were not consistent with exposed ozone concentrations and/or ozone sensitivity of the cultivars. The behavior of polyamines and phenolics in the damaged plants at high ozone levels could be interpreted as an indication of ozone injury rather than activation of additional protection mechanisms scavenging active oxygen species formed by ozone. Several responses triggered by ozone could explain the differential sensitivity of the rice cultivars and be used as reliable indications of relative ozone damage to rice plant.

Keywords