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Latent Variable Fit to Interlaboratory Studies

Gyeongbae JeonV

Abstract

The use of an unweighted mean and of separate tests is part of the current practice for
analyzing interlaboratory studies, and we hope to improve on this method. We fit, using
maximum likelihood (ML), a rather intricate, multi-parameter measurement model with the
material’s true value as a latent variable in a situation where quite serviceable regression
and ANOVA calculations have already been developed. The model fit leads to both a
weighted estimate of the overall mean, and to tests for equality of means, slopes and
variances. Maximum likelihood tests for difference among variances poses a challenge in
that the likelihood can easily become unbounded. Thus the major objective become to
provide a useful test of variance equality.
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1. Interlaboratory studies

There are two ways in which interlaboratory studies are conducted. The first is designed to
monitor laboratories to see good agreement between the results obtained by different laboratories,
by allowing each laboratory to compare its results with those obtained by other laboratories and
take remedial action, if necessary. It is often referred to as “proficiency testing.” Here, the
laboratories themselves are of primary concern. The second is concerned not so much with the
laboratories as with the method of measurement. Tests performed with presumably identical
materials, in presumably identical circumstances usually do not yield identical results. This is
attributed to unavoidable random error inherent in every test procedure; the factors that may
influence the outcome of a test cannot all be completely controlled. Many different factors contribute
to the variability in application of a test method, including the operator, equipment used, calibration
of the equipment, and environment.

Data from an interlaboratory study typically include two or three determinations from each of a
number of laboratories all measuring the same characteristic on each of a number of carefully
prepared materials. Although the data are in simple format, the statistical issues are not that simple.
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Committee E11 of the American Society for Testing Materials(ASTM) has issued a software
program with its standard E691 deals with the evaluation of methods of measurement in terms of
reproducibility and repeatability. As a supplement to E691, J. Mandel proposed additional
calculations using an unweighted average to estimate the matenials’s property and fitting a
row-linear model to examine what mathematical model underlies the data. Proctor(1991) used
nonlinear, generalized least squares to fit to sample covariances of the latent model (2.4) below.
Fuller(1987) also noted that the model (24) was the psychometric single factor model. His
development of maximum likelihood estimators follows closely that of Lawley and Maxwell(1971).
Pantula and Fuller(1986) derived algorithm computing the maximum likelihood estimator and the
estimated covariance matrix of the estimators of the factor model under factor vector is distributed
as an normal random vector. Fuller and Proctor became bogged down in problems of
non-convergence and solutions falling on the boundary of the parameter space. Thus the stage is
set for our work to develop fitting methods and hypotheses tests.

2. Latent variable models

A classical measurement error model decomposes the recorded measurement X into a true value
T and a random error E, ie.,

X=T+E, (2.1)

where E(E) = 0 and var(E) = 62, a constant. Elaborations of the model arise from specifying the
true value T to accommodate a number of materials and a number of laboratories along with
allowing for non-constant variance.

The first elaboration treats laboratories as a random effect and each material as fixed and given.
The purpose of the model is to characterize the measurement method’s precision. The model used
1s:

Xgp= t;+ l;+ € (2.2)

where t; is the true value for the material j, /; is a random effect of the laboratory and e ; is
a random effect for the "r’ replicate. The random effects are taken to have zero means, to be

independent and to have variances ¢ 2,}. and o Ze,., depending only on the material.

Another way Model (2.2) has been found to fit poorly is in differences among laboratories.
Laboratories may have additive biases. They may be more or less sensitive in tracking the
materials. This is sometimes called scale bias. Finally, they may show more or less scatter around
these systematic effects. The model with these features is:

X,‘;‘kz /l,"{" B,‘ Z','+ A,'j'f‘ 8,']'+ Ezjkr (23)
where we not only consider the M material effects as fixed but also consider the L laboratory

effects as fixed. The term 4 is a non-linearity deviation for laboratory i with material j.
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€ ;» are random effects for replicates with zero means and independent from the other terms.

They may have different variances o 25, by laboratories and by materials. ¢, are taken to
if 7

be random with zero mean and independent with different variance ¢ 2,;,,,. by laboratories and

materials. The p; represent laboratory additive effects and their differences suggest possible
laboratory biases.

We consider latent variable models for the interlaboratory study setting and present a full
maximum likelihood approach when both laboratories and materials are assumed fixed. With the

base model given by below, eight variations on the model concerning the equality of the u,'s, B8;

's and ¢ ?’s are considered.

The model we consider is a revised version of (2.3) in which there is only one replicate
observation(r=1) and no provision for non-linearity. It is

Xijz Il,"+' B,‘ Z'I‘+ E,‘j, (24)
where i=1,2,...L indexes laboratories or tests and j=12,...M indexes specimens of materials or
subjects. The response variable X ; is an observation, a test result, by laboratory i on material j.

The g ; component is an additive effect of laboratory i. The parameters g ; and B; describe the

measurement bias and measurement sensitivity characteristics of laboratory i. To preserve these
meanings and to remove a problem of identification, we designate some one laboratory as “Number

L" and set p;=0 with #,=1 for it. The r; represent the material’s unknown fixed true
values. It is assumed that € ; is normally distributed with mean zero and variance ¢ ? It is further

assumed that
E( €)=0 for all ¢, j
E(e%) =01 for all j
Further, E( €; €;)=0 for all j and for all pairs (7,7')
and E( €; €,;)=0 for all i and for all pairs (7,7).

That is, laboratories are independent but may have different variances. We also assume that € ;
is distributed independently of r; The variances are here assumed not to depend on the material.

This condition would seem rather unrealistic. Relationships between level of a material and
variances are commonly experienced (Horwitz, Kamps, and Boyer 1980). In fact the E691 Standard
requires reporting a separate standard deviation for each material. There are two reasons that
justify our assumption. We begin data analysis by checking for outliers and for variance
heterogeneity by materials and take whatever power transform is needed to homogenize variances.
Secondly, whatever variance heterogeneity among materials might remain is not expected to affect,
to any noticeable extent, our application of the methods we develop for laboratory means and
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laboratory slopes and laboratory variances. That is, material variances are, roughly speaking,
ancillary to the test statistics and estimates for laboratories. Certainly, the differences among the

7;'s themselves may not be ancillary, but their tie to the error variances will nearly be so.

The model specification for X ; in (2.4) is similar to that in regression theory in that it is a
linear combination of other variables. Here, however, r; which plays the role of the independent
variable, is not directly observed. We can distinguish between two kinds of models for the r;’s. In
one we conside 7; to be random, as subjects may be a random sample in psychometric studies. In
the other we consider 7; to be nonrandom quantities that differ from one material to another. Here

in the interlaboratory study setting, 7; values are properly considered fixed. That is, the test
materials were specifically chosen to span a range of levels for the interlaboratory experiment. The

components 7; are usually latent quantities, representing true values for the materials, but some
interlaboratory study are conducted with, so-called reference materials and then the r; would be

given. For the interlaboratory study that most of our data come from, the z; are not known.

To determine estimates of the unknown parameters, we use maximum likelihood which minimizes
-log lik, where

. 2 2y
hk(#lr".y #L) Bl’.“, BL’ rlp.") TM)G l,'"’o'L)_

Xy— pi— Bir)*
lLMH lMeXD{——%ﬁ:-( . ﬂzﬁzl)

=5 = =1 o5

@m ° (¢?)?

(2.5)

This lik is the likelihood function obtained under the assumption that the observations have a
multivariate normal distribution.

2.1 Maximum likelihood estimation

The log likelihood function for the L by M observations X ; assuming a multivariate normal

distribution is;

4y — oy — . . 2
log lik= constant—~—-2M‘ 21 log o ?—-—é gl gx (X #012» Bity) (2.6)

Maximization (2.6) is equivalent to minimizing

F( gy, #r, Bioy Br, T1,, Ty, 03,,05)=—loglik 27

For maximum likelihood estimates, we need the first-order partial derivatives with respect to
parameters u«,, B;, ©;, and o‘? and set these equations to zero. Because of the necessity of

confirming the correctness of the measurement method, the standards organizations require at least
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5 laboratories, and usually there are 8 or more participating. There will also be as many or more
materials. Thus the number of observations n=ML will fairly exceed the number of parameters
which is at most 3L+M-2. These likelihood equations cannot in general be solved algebraically, and
thus iterative methods are applied to calculate or approximate the maximum likelihood estimates
numerically.

To start the iterative procedure we require reasonably good initial estimates. We base initial
estimates on the results of regressing X, on 7,= y.,-. The iterative maximum likelihood

procedure seems to converge satisfactorily for models having the same error variance for every
participating laboratory. But we cannot obtain maximum likelihood estimates for models having
different error variances for each laboratory because the likelihood function (2.5) is unbounded.
Anderson and Rubin(1956) showed that the likelihood function does not have a maximum. To show

this fact, note that if p;=0, 8,=1and r;= X then( X ,— p.— B r,) is zero so 0 3

can be made arbitrarily small without changing the quantity in the exponent of (2.5). As di

approaches zero, the likelihood is unbounded. Thus the likelihood function has no maximum, and
maximum likelihood estimates do not exist.

The likelihood with all variances equal is well behaved and the calculation of maximum likelihood
estimates is relatively routine. The likelihood with unequal, unconstrained variances is unbounded

with some variance estimates falling on the boundary of the parameter space ( ¢ %= 0 for some i).

Thus it is not possible to obtain a meaningful test of
Hy oi==0}
H,: not all ¢ equal.

However, in interlaboratory study applications it is unlikely that the full generality inherent in
H | is necessary. Likely departures from H are those in which the laboratories are segregated
into subgroups defined by commonality of variances. For example, with L=5 it would be unusual to
have 5 unique variances © ?* o ?, i#j, 1,7=1,---,5. A more likely occurrence is one in which,
the variances are segregated into two groups with common variance within groups, e.g.,

62=0% oi=0i=0%with o6i+0}

The expectation that variances will likely segregate into such groups provides the rational for
constructing vartous null and alternative hypotheses which incorporate grouping of the variances.
These have the advantages of both practical relevance and boundedness of the likelihood provided
all of the groups contain at least two laboratories.

In the following sections a number of alternative hypotheses are formulated depending on
different grouping criteria. Because the groupings are not known it is necessary to consider all
possible groupings of a particular type. We propose and investigate the suitability of using
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Bonferroni corrections to address the problem of multiple groupings. The unboundedness of the
likelihood can also be addressed directly by placing meaningful lower bounds on the smallest
variance. This method is investigated first, then we discuss methods based on grouping.

We recognize that the various test statistics we propose do not have the usual asymptotic x2
distributions generally associated with likelihood ratio tests because of the ordering of the variances
implied by the groupings. Therefore, the suitability of the usual large-sample likelihood ratio theory,
combined with Bonferroni adjustment should be further studied.

2.2 Method A of Formulating Alternative Hypothesis

For homogeneity of variances the null hypothesis of particular interest is:
HO: 0‘%:...:6%:0‘%

Our first suggested approach to resolve the problem of unbounded likelihood was to take a lower
bound for variance estimates at a small positive value. We took a laboratory in turn and fixed its
variance at a reasonably small value. Since it would be unrealistic that any laboratory should be
more than ten times as precise as the others, we take the small value as one tenth of the average

. . @ . ) ~2 .
of the all starting variances. Let ¢ ,-2 denote the variance starting values, the small value ¢ is

1

defined as =~ 210 ,-2 (U)/ L and is called the lower bound we use. This lower bound represents an

10

extreme amount of departure when all laboratories are using the same method.

For the L™ laboratory, //.\z 1 and 3 1 are set to zero and one respectively. If laboratory k has
2

. . . ~ 2 . . .
its variance fixed at ¢, then a hypothesis of some interest is that, apart from o 2;;, the o i's are
all equal. Let ¢ S(k) denote this common value, the null hypothesis is written:
. 2__ .2 ~ 2
Hya, 0i=0yn= 0.
The minimum value of the -log likelihood under H gy is found and denoted by L( P k).

L( 2‘\)/2): min F(i, O‘g(k))y _§:( My, ML, Bl’”'v BL7 Ti, ", TM)

where  F(_&, 0 &)= constant+ %( log o +(L—1)logo Sw) +

1
2 =

~12 ﬁl(ka_#k_ Brz)it 12 2 % (X4— wi— Bit))?)

o o =1 =1
0Bk

The alternative states that:
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The minimum under H (4, can be found and is denoted by L( @k)I
L Qp)=min F(& 6% | i=1,-, L i+k)

M

where  F(L, o %)= constant+ 5

log o + Zl log 0 2|+

*k

ﬁ (Xy—wpi—Bit)t
2 .

7=1 0 ;

i*k
If one of the variance estimates ?7% (i=1,,k—1,k+1,--,L) was found equal to, say
~ ~2 . - . . .
o ?= 0, it suggests that likelihood under H 4, is unbounded. This means that fixing

. ~2 . . . . )
laboratory k’s variance at ¢ is not applicable and another laboratory must have its variance fixed.
Each laboratory has its variance fixed at a lower bound in turn. This would generate L values of

L( Z)k) and the corresponding L. values of L( @k) for k=1,2,--, L. Since any one of the
laboratories could have the fixed variance, we must apply arguments from the topic of multiple

comparison tests to adjust the calculation of a significance probability. If more than one L( :Qk)
and L( /c?)k) is finite for each k, we should choose the test statistic chi-squared value as the
maximum over all L differences of L( @k) and L( @ k). That is, we pick the one that has the

largest xz or smallest p-value and conduct the test at significance level *% by applying the

Bonferroni multiple comparison procedure. If the test with largest x2 1s rejected at an adjusted

significance level _a, this gives evidence that there exist precision differences among laboratories.

2.3. Method B of Formulating Alternative Hypothesis
Our next approach was to pair the participating laboratories. That is, laboratories 2i-1 and 2i for

1=1,2,"-, %were assigned common variance ¢ ii if the number of laboratories L is even. Then

we can obtain the maximum likelihood estimates for —é’- common variances. If L were odd then

3

there would be L2— common variances and one for a triple.

The null hypothesis of particular interest is that the o ?’s are all equal. Let 0% denote the
common value for all laboratories. A reasonable hypothesis test is

=-w=¢gi=¢lor HyoY=04%= =0t}
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The L{ @) under the null hypothesis H o is found by:
L(w)=min F(& 0§), £=Cpuy,, s, Broey B, T,y Ta)

where  F(_¢, ag)=constant+—@(logag)+—%( 012 21 ﬁl (Xy— pi— Bit)) 2).
o FLIF

2 =
If L is even, the alternative hypotheses H p states:
) 2 - L
Hp:not all ¢ 3 are equal {i=1,-, 9 )
The L( @) under the alternative hypothesis H 18 1s found by:
R 20 L
L( 2)= min F(j, ouli=1,-, 9 )
L
2 log 0

L
ﬁ f ( Xogimyi— #2i-1— Baia Tj)2+ ( Xoij— #oi— Bai Tj)z]

&, ol

where  F(&, o03)= constant+ -4

1
2

If L is odd, the alternative hypothesis H ;g states:
Hig:not all ¢ f,i are equal. (l'=1,---,——l—‘—2——1l)

The L{ ©) under the alternative hypothesis H 18 1s found by:

L( 2)= min F(_g, a2l izl,...’%>

L=1
3 log o5 +2 i log o]+

_%(iﬁ ( X4~ .3;1’)2

=1 sj=1 GDI

where F(&, ¢ 35)= constant+ %

L—-1 2 2
é ﬁ ( Xogij— 9= B 1)+ ( Xpiw1,— Hoiv1— Boiv1 T))
3

Let R be the number of possible combinations of pairs. As the number of participating
laboratories goes larger, the number of possible combinations of pairs will be much larger. Rather
than have some particular combination designated for test or rather than pick one combination at

random, we suggest running all possible pairings and finding the minimum L( @k) under the
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alternative hypothesis H g, for k=1,--, R. We pick the one that has the largest x2 or smallest

p-value. To implement this approach and to apply overall tests of significance for comparing

variances, we must apply a Bonferroni multiple comparison test at significance level —%.

2.4. Method C of Formulating Alternative Hypothesis

Instead of developing overall tests of significance for comparing variances in error of
measurement, let's concentrate on identifying whether any single laboratory has a different error
variance from the other laboratories. We would thus be particularly interested in comparing the

imprecision of a single laboratory k, or ¢ i, with imprecision of the others which are taken to equal

one another.
Under the given condition:

ci=0tw (i=1,,k—1,k+1,-L) (2.8)

where o© S(k) is unknown common variance of participating laboratories except laboratory k. Let

o 5 denote common variance when the ¢ ;z-'s are all equal. The null and alternative hypotheses are

formulated as:
. 2 __ 2 . 2 __ 2 __ e 2 __ 2
Ho- 0= 0 (g O HO'O.I_GZ_'"_O'L—'OO

and Hy: o iZ o %(k) with the given condition (2.8) is retained.
The L{ @) under the null hypothesis H is found by:.

L(w)= min F(_§, G%), L=Cpuy,, v, By B, t1,, )

where F(L o 8)= constant+ AéL(logo(z))—F—é(T‘l-g ﬁ (X4— pni— Bit) 2).
0

=1 5j=1

The L( :Qk) under the alternative hypothesis H ¢, is found by:

L( 2,)=min F(t 0% 0w )

where  F(.& o3 ,aﬁ(k))=constant+—‘g4(logoi+(L—l)logo§(k))+
_ZL ;2 gl(ij"llk— Bit)l+ ! 4 ﬁ: ( Xyi— pi— Bit)?
k7 o Tl =1

For some data observations, convergence may not be achieved if the data suggest that another
laboratory has a smaller variance than the initially designated common variance of the grouped
laboratories. If this happens, the likelihood is unbounded and a minimum under alternative
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hypothesis H ¢, does not exist. Thus we run all possible groups and find the groups satisfying
the constraint ¢ iZ o %(k). If more than one group converged, we would pick the one that has the
largest xz or the smallest p-values. We would thus apply the Bonferroni multiple comparison test

at significance level —Z

25. Method D of Formulating Alternative Hypothesis

This method combines features of Methods B and C. We pair two laboratories and assume them
to have a common variance while the other variances are free to differ. If we consider the two as
"reference” laboratories, for the time being, then we might be interested in comparing the
imprecision of the remaining individual laboratories and a statistical test of significance to do this
would of course be of some utility. Denote these reference laboratories as al and a2 and their

common variance as ¢ 2(a1,a2)- Let dg denote the common variance when the ¢ %’s are all equal.

The null and alternative hypotheses are formulated as:
Hyol=ci==03i=0}

and Hp: 0?20%,11_,12), for i#al nor a2

where ¢ %al‘,,z) is the common variance of al and a2.
The L( @) under the null hypothesis H is found by:

L(/C;)): min F(j, 0%), &=Cuy,, 2, B,y Bi, Ty, Ty)

where  F(_¢, dg)=constant+—M2-L—(logag)-i——%(—;l-g 21 ﬁl ( X4— wi— Bi 1)) 2).
2 =

1=

The L( :Q), under the alternative hypothesis H ;p, is obtained by
L(Q)=min F( L o{mw 0 | i=1,-,L i*al nor a2)

where

2
2log o (al,a2)+ Zl log o ?
i*al, a2

F(&o%am, ot li=1,-,L i+al nor a2)= constant+—]é4

1
+2 2.

2
o o “
(al, a2) i+al, a2 :

7 i=Za:.a2 ;gl (Xj— mi— Bie)?+ 21 ng e ﬂiz_ = tj)z ]

For some data observations, convergence may not be achieved if the data suggest that another
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laboratory has a smaller variance than the initially designated common variance P 2(,,1,,12) of the

paired laboratories. If this happens, the likelihood is unbounded and a minimum under the alternative

LLL—:D—) and find

hypothesis H jp does not exist. Thus we would run all possible pairs (R = 9

pairs satisfying the constraints ¢ ?2 4] %al,aZ) for i#al nor ¢2. If more than one pair converged, we

would pick the one that has the largest x2 or the smallest p-value. We would thus apply the

Bonferroni multiple comparison test at significance level —LZ—LZ—CL—I)‘ for the alternative Method D.

2.6 Testing Hypothesis Formulation

Let H be any specific hypothesis concerning the parametric structure of the model and let H;

be an alternative less specific hypothesis. We can then test H, against H, by means of the
likelihood ratio technique. Let L( @) be the minimum of -log lik under H o and L(Q) be the
minimum under H,;. Then T=2(L{(@)— L(®)). Under H, (and when Q and ® are in

reasonable proximity to one another), this 7T is distributed, in large samples, as a chi-square
distribution with degrees of freedom equal to the difference in the number of independent

parameters estimated under H, and H,. Method D uses L-1 variance parameters under H

and a common variance parameter under H g, and thus the chi-square test statistics from Method

D have L-2 degrees of freedom. Method B uses —IE" or 9 1 variance parameters under H; and

a common variance parameter under H;, and thus the test statistics 7" from Method B have

L—2 L—-3

2 or =5 degrees of freedom. Likewise Method C uses 2 variance parameters under H

and a common variance parameter under H, thus test statistics from Method C has one degree of
freedom. In case of Method A, the hypotheses H, and H 4, are not hierarchical. That is, the
test statistic based on the change of likelihood from Hy to H 14, could have close to a
chi-squared distribution with L-1 degrees of freedom but it may not. We prefer to use the

chi-squared test statistic based on the reduction in likelihood from H g4, to H 14, for which

‘@ +C 0 » and which will give a chi-square distribution with L-2 degrees of freedom, to test for

variance inequalities.

We are questioning about the way laboratory performances differ and how they are tied to the
parameters. Differences among the g ,'s which might be called additive biases are wide spread
and can be easily explained by calibration problems. Differences by B;'s which are sometimes

called scale biases also arise from relatively simple conditions. The difference among the ¢ ?’s
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