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Improved Estimation of Poisson Means
under Balanced Loss Function

Younshik Chungl)

Abstract

Zellner(1994) introduced the notion of a balanced loss function in the context of a
general linear model to reflect both goodness of fit and precision of estimation. We
study the perspective of unifying a variety of results both frequentist and Bayesian
from Poisson distributions. We show that frequentist and Bayesian results for
balanced loss follow from and also imply related results for quadratic loss functions
reflecting only precision of estimation. Several examples are given for Poisson

distribution.
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1. Introduction

Let ¥'=(y;..,y,) be an observation vector when
independently obtained from Poisson distribution with mean
-8 5%
J"(Y;{ﬁi):"e—y:;‘gi“, vi=0,1,..
Standard loss structure for estimation the parameter vector
L(6~-"®)=|"0-al

where @ denotes the estimator of @.

Poisson mean, Posterior expected

the observations Y;,1<i<p, are

6; as follows;

(1.1

@=(01,...,0ﬂ)egc Rp is
(1.2)

It was shown that in Roy and Mitra(1957), 6% ¥)=Y; is the unique minimum variance

unbiased estimator(UMVUE) of §6; . Hudson(1978), Hwang(1982) and Ghosh, Hwang and

Tsui(1983) considered the problem of improving upon 8°(Y) with ith component 8% Y)=Y;
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under the loss (1.2). For example, the improved estimator &(Y) is given componentwisely by

8AY)=08UY)+g(Y) where

Y‘_]._
gi(Y)=—;%k—, S= Zl( ZZH;)Z (1.3)

This means that the risk function of &(Y) is less than that of 8°(Y).

Zellner(1994) proposed the balanced loss function as a means of incorporating both
goodness of fit and precision of estimation in the evaluation of an estimator. A general form
of the balanced loss for the above setup is

Ly®, ®=uw(y=~ 8 ( y— B +1-u) 6~ B)(6-8) (1.4)
when 0<w<1 is the relative weight given to the goodness of fit portion of the loss and
1—w is the relative weight given to the precision of estimation portion. Note also that the
loss function (1.2) is a special case of L (6, ®)  when w is chosen to equal to zero. We
will  therefore refer to the loss function as Ly(@, ®). Under the balanced loss (1.4),

Rodrigue and Zellner(1995) considered the estimation of the exponential mean time and Chung,
Kim and Song(1998) investigated an admissible linear estimation of Poisson mean and Chung
and Kim(1997) obtained the James-Stein type estimator of multivariate normal mean. Recently,
Chung and Kim(1998) and Chung, Kim and Dey(1999) obtained the new class of minimax
estimation of multivariate normal mean under the balanced loss(1.4).

We are interested in estimating @ using an estimator J(Y) and the loss in estimating
8 by S(Y) wil be denoted L(8,8Y)) . If we have two estimators &; and &, that are

both functions of Y, then &, is said to be better than Jy in terms of risk if
R(58,,0)<R(8,,0) for all #=@ , with strict inequality for some 6= where
R(8,0)=E{[L(&Y), 0] . If & is better than &, we say 0, dominates &, in terms of

risk.

We will consider estimator of the form & ¥)=08% y)+g( ¥) where g(Mel.
Assume that g( y) is chosen so that Elg( »){8°( ) — »1=0 . We will show that if
& »)=6" y)+g( y) dominates the UMVUE &°( y) in terms of risk for the loss function
Ly, then &, =8 »)+(1—w)g( ») dominates the UMVUE &% y) in terms of risk
for the loss function L, and vice versa. Also we will show that if #(®) is generalized prior
distribution which gives rise to a generalized Bayes procedure for each w, it gives rise to a

dominating generalized Bayes procedure for each w.
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The paper is organized as follows. Section 2 gives a simple identity connecting
R,(6,08) and Ry(6,8) . The general results are obtained in Section 3. Section 4 is devoted

to examples for Poisson distributions.
2. Simple Identity

We need the following lemma for proving the main results. For notational conveniences,
define, for 0<w<], the difference of loss between 6°( y) and 8°( y)+(1—w)g( ¥) by
4,40, N+ Q- wel =L0,8( N+(1-wel »)—L,6, 8 y). @D
In particular, 4¢(0, 8 y)+g( y))=Ly(0, 8 y)+g( ¥))—Ly(O,38°( y)) denotes the
difference of loss between 6°( y) and &°( )+ g( y) .

Lemma 2.1. Assume that g{(3»)e.£ . Then

4,0, N+U-wel ) = (1—w?4i(6,8 y)+g( )
+2w(1— wel M »)— ) (2.2)
Proof.
4,00, n+U-we(y) = [wl(»+1—we(y)— s

+ (1= wl™ M+A-wel y)—éll?
- (@l )= P+ -l »— D
[w(1—w)illgl MI*+(1— w1 - w)Hleg( »II?
+ 2u(l—wel N (- »+2(1—we( N - O]
[(1—w)?llg( »IF+2(1—w)e( (8 ( »)— O)]
+ 2u(l—we( M »— ¥
(1—w)?4(8, 8 ) +2a( y)+2u(1—wel ML »)— y) (23

This completes the proof of the lemma.

Remark 2.1. For Poisson distribution, g{ ¥)(8°( y)— y)=0 since (V) =Y. Therefore,
under the balanced loss in (1.4), it follows from (2.3) that the risk difference function

between 8°( y) and &°C y)+(1—w)g( ¥) is given by
460) = R(0,5( »)+(1~wg( »)—Ru0,8( »))
= (1-w)’E4(6,5( »)+g( ) (2.4)
where R,(©, ® = EL,(6, ®) denotes the risk function under the loss in (1.3).
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3. Main Results

Theorem 3.1. If 8°( y)+ g( ¥) dominates 8°( y) in terms of risk under the loss (1.2), then

8% )+ (1 —w)g( y) dominates 8°( y) in terms of risk under the balanced loss (14) for
0<w<l.

Proof. Recall that the risk difference function between &°C v) and &% y)+
(1—w)g( ) is given by
4,0) = R,(8,8( 9+ (1wl )~ R0, )
= (1—w)*E4)(8, 3 »)+g( ») (3.1
Since 8% y)+g( y) dominates 6°( y) in terms of risk under the loss (1.2), the risk
difference between 8% y) and 8 y)+(1—w)g( y) under the Iloss (1.2) is
E4y(8, 8% y)+ g( y)) which is less than zero and so 4,(@) <0.

Hence, the class of estimators which dominates the UMVUE estimator 8% y) under the

usual estimation loss leads to a class which dominates under the balanced loss L, (and vice

versa). An immediate corollary which follows from the convexity of Lg is
Corollary 32. If &% y)+g( y) dominates 6°( y) in terms of risk under L,, it
dominates 8"( ¥) under L, in terms of risk for all 0<w,<w.

Note that it also follows that if 6°( ¥)+ (1~ w)g( y) dominates &°( y) in terms of
risk under L, , then &°C ¥)+(1—w )g( ) dominates &% y) in terms of risk under
L, foral 0Sw<w .

Equally general results for generalized Bayes estimators are possible as the following result
shows.

Theorem 3.3. Let 7(®) be a generalized prior for @. If &% y)+g( ¥) minimizes the
posterior loss under L, (and is therefore generalized Bayes), then 6°( y)+(1— w)g( y)

minimizes the posterior loss under L,

Proof. Let E®” denote the posterior expected value given y. Suppose 8°( ¥)+g( ¥) is
generalized Bayes under L,. Then, E®Y L(0, 8 y)+g( y)<

E®Ly (0,8 y)+h( ) for all k( ). It follows from Lemma (2.1) that
E®ILy(8,8% »)+(1—we( »)<E?’Ly(0,8( y)+(1—w)h( y)) (3.2)

and hence since (1—w)k( y) is a general function belongs to 2 for 0<w<], that
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8 »)+(1—w)g( y) is generalized Bayes for loss L, The Lemma follows trivially for

w=1 since 8°( y) is generalized Bayes.

The following result follows directly from Theorem 3.1 and Theorem 3.3.

Corollary 3.4. Suppose &°( y)+g.( v) is generalized Bayes estimator for the loss L,
which dominates &°( y) for this loss. Then, &% y)+(1—w)g,{ ¥) is the generalized

Bayes estimator for this same prior for the loss L, and dominates &% y) for this loss.

4. Examples

A very general class of estimators improving on &N ¥)=(Yy,..., Y,) follows from
Hwang(1982), see also Ghosh, Hwang and Tsui(1983).
Theorem 4.1. (Hwang, 1982). Let y‘=(y,,..,y,) be an observation vector when the

observations Y;, 1<i<p, are independently obtained from Poisson distribution with mean &,

as follows
—8ipyi
e '9,-
f(y;{ei)':__’;,_—_, y;=0,1, ... (4.1)
Standard loss structure for estimationg the parameter vector &= (4, ...,0,)eQC R? is
L(e-"0)=|"0- 6l (4.2)

where ® denotes the estimator of © . Then the estimator 6°(Y)+ g(Y) improves on
8°(Y) in terms of risk provided

3 W) gV - g Y- e +ET

where g(Y)=(g(Y),...,g,(Y)) and e; denotes rth coordinate vector whose ith component

gz( Y) <0 4.3)

1s one and the remaining entries are all zero.
Remark 4.1. Famous solutions in Theorem 4.1 is obtained as

g{V)=—c(Vhlvy)/D, i=1,..,p (4.4)

where

M= 2L D= B[aGIkntD, 0sdy<2. 4

Alternatively, we may choose f:\h,z( y;) as D which is same as the form in (1.3) with
&
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=1

Then we may give a fairly general theorem for balanced loss in L,(6, 8). This is
setting by combining Theorem 4.1. and Remark 4.1 with Theorem 3.1.
Theorem 4.2. Let g(y) satisfy the conditions in (44). Then (V) +(1—w)g(Y) dominates
8°(Y) in terms of risk for L,(6, 8 in (1.4) for 0<w<]1.
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