Abstract
The pyroelectric property of $Pb_{0.9}La$_{0.1}TiO_3$ceramics in a range of 1.3-4.1$\mu\textrm{m}$, fabricated by conventional solid sintering, was investigated as a function of poling field. The pyroelectric of the 4.1$\mu\textrm{m}$ of $Pb_{0.9}La$_{0.1}TiO_3$ceramics is higher than that of the 1.3$\mu\textrm{m}$ and 1.7$\mu\textrm{m}$ of $Pb_{0.9}La$_{0.1}TiO_3$ceramics at a low poling field and the pyroelectric coefficient is 25nC/$\textrm{cm}^2$K at a 4kV/mm poling field in every grain size. In order to explain this phenomenon, the intrinsic and extrinsic effects in view of the definition of the pyroelectric coefficient are introduced. The intrinsic and extrinsic effects on the pyroelectric property were investigated by measuring the tetragonal ratio and the $I_{002}$ with temperature with high temperature X-ray diffractometer. The change of spontaneous polarization and the $90^{\circ}$domain wall motion with temperature in the 1.3$\mu\textrm{m}$ and 4.2$\mu\textrm{m}$ of $Pb_{0.9}La$_{0.1}TiO_3$ceramics have no effects on the pyroelectric coefficient. In our study, it can be seen that the pyroelectric coefficient is related to the quantity of $180^{\circ}$domain switching after poling treatment.