Optimization of D-\beta-hydroxybutyric Acid Fermentation Using a Mutant of Candida Rugosa IFO0750

Candida rugosa 변아주를 이용한 D-\beta-Hydroxybutyric Acid 발효공정의 최적화

  • 경수현 (연세대학교 공과대학 생명공학과) ;
  • 신철수 (연세대학교 공과대학 생명공학과)
  • Published : 2000.12.01

Abstract

A UVmutant of Candida rugosa IF00750 was made and used to convert butYlic acid to D-$\beta$-hydroxybutyric acid(D-$\beta$-HBA). Major regulating factors for D-$\beta$-HBA fennentation were investigated via chemostat analyses. The maximum specific productivity was achieved at a specific growth rate of $0.06h^{-1}$ where the glucose and butyric acid concentrations in the fermentor were 10 g/L and 8.7 g/L. respectively. A fed-batch fennentation was performed with maintenance of the optimum glucose and butyric acid concentrations. The D-$\beta$-HBA concentration after 120 h of cultivation reached 12.4 g/L, which was 4.7 times greater illan the concentration obtained by batch fermentation.

Candida rugosa IFO0750의 UV-변이주를 제조하여 butyric acid를 D-$\beta$-hydroxybutyrin acid(이하 D-$\beta$-HBA)로 전환하는 데 이용하였다. 후보 변이주 중 활성이 가장 높은 Candida rugosa CM42를 이용하여 발효를 수행한 후 NMR 분석, polarimeter 분석 등을 통하여 생성된 물질이 D-$\beta$-HBA 임을 확인하였다. Chemostar 배양을 이용하여 D-$\beta$-HBA 발효 생산의 주요 영향인자를 분석하였으며, 균체의 활성을 나타내는 비생산성의 최대치는 균체의 비증식 속도를 0.06, 발효조 내의 glucose와 butyric acid의 농도를 각각 10g/L와 8.7 g/L로 각각 유지 할 때 얻어졌다. 회분식 배양 중에 glucose와 butyric acid를 공급하여 발효조 내의 glucose 및 butyric acid 농도를 최적조건으로 유지하는 fed-batch 발효를 수행하였다. 배양 180 시간 후에 D-$\beta$-HBA 농도가 약 12.4 g/L에 도달하였으며 회분식 발효에 비하여 4.7배 증가하였다.

Keywords

References

  1. Trends Biotechnol. v.11 Prospects for the increased application of biocatalysis inorganic transformations Faber, K.;M. C. R. Franssen
  2. Biotechnol. Bioeng. v.13 Preparation of L-hydroxyisobutyric acid bacterial oxidation of isobutyric acid. Goodhue, C. T.;J. R, Schaeffer
  3. J. Ferment. Technol. v.59 Stereoselective conversion of isobutyric acid to β-hydroxyisobutyric acid by microorganism. Hasegawa, J.;M. Ogura;H. Kanema;H. Kawaharada;K. Watanabe.
  4. J. Ferment. Technol. v.60 Production of β-propionic acid from propiopic acid by a Candida rugosa mutant unable to assimilate propionic acid Hasegawa, J.;M. Ogura;H. Kanema;H. Kawaharada;K. Watanabe
  5. Tetrahedron. v.42 Enzymes in organic synthesis Jones, J. B.
  6. MSthesis Stereoselective bioconverison of isobutyric acid to D- and L-β-hydroxyisobutyric acids by yeasts Kim, H. S.
  7. Biotechnol. Lett. v.22 Optimized production of L-β-hydroxybutyric acid by a mutant of Yarrowia lipolytica. Kyong, S. H.;C. S. Shin
  8. Bioprocess. Eng. v.16 High production of D-β-hydroxyisobutyric acid from methacrylic acid by Candida rugosa and its mutant Lee, I. Y.;C. H. Kim;B. K. Yeon;W. K. Hong;E. S. Choi;S. K. Rhee;Y. H. Park;D. H. Sung;W. H. Baek
  9. Biosci. Biotech. Biochem. v.56 Production of (S)-(+)-3-hydroxybutyric acid from 1, 3-butanediol by resting cells of yeasts Shigeno, T.;A. Katayama;T. Nakahara.
  10. J. Ind. Microbiol. v.29 The use of microbial enzymes for the synthesis of optically active pharmaceutical Sih, C. J.;G.M. Gu;G. Fulling;S. H. Wu;D. R. Reddy
  11. Trends Biotechnol. v.12 The potential of lyases for the industrial production of optically active compounds Werf, M. J.;W. I. I. Tweel;J. Kamphuis;S. Hartmans;J. A, M. Bont