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FOURIER-BESSEL TRANSFORMATION OF
MEASURES WITH SEVERAIL SPECIAL
VARIABLES AND PROPERTIES OF
SINGULAR DIFFERENTIAL EQUATIONS

A. B. MURAVNIK

ABSTRACT. This paper is devoted to the investigation of mixed
Fourier-Bessel transformation (see [2]) for f > 0:

fem™ f L Hlyz"‘“Jw ()%

m tlmes

xe ' f(z, y)dzdy - . . Ym

1 S
(1 > —5 I =T1,m). We apply the method of [6] which provides

the estimate for weighted Loo-norm of the spherical mean of | i |2
via its weighted Li-norm (generally it is wrong without the re-
quirement of the nen-negativity of f). We prove that in the case of
Fourier-Bessel transformation the mentioned method provides (in
dependence on the relation between the dimension of the space of
non-special variables n and the length of multiindex ) similar es-
timates for weighted spherical means of }f|2; the allowed powers of
weights are also defined by multiindex . Further those estimates
are applied to partial differential equations with singular Bessel op-
erators with respect to y1,. .., %m and we obtain the corresponding
estimates for solutions of the mentioned equations.

0. Introduction

It is proved in [6] that if f is non-negative then for any « € (0, 251]

(1) 2o (Hlloo < Cllr* o (£)ll1,
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where o(f)(r) is the mean of | f]? over the sphere of radius r with
the center at the origin and C depends only on the dimensicn of the
space.
Note that generally (1) does not, hold: one can construct a sequence
{ fm }2o_, such that [|r*~*a(fn)]l1 does not depend on m but at the sa-
me time o(f,,,)(1) tends to infinity as m — . Thus the requirement
of the non-negativity of f prohibits the above-mentioned behaviour.
Actually it means a certain restriction for the shape of the graph of f
In this work we investigate the mixed Fourier-Bessel transformation
which is applied in the theory of partial differential equations contain-
ing singular Bessel operators with respect to selected variables (they
are called special variables). Those equations arise in models of math-
ematical physics with degenerative space heterogeneities.
It will be proved that the estimates of kind (1) are valid for weighted
spherical means of | f |2 but the weights in both parts of the inequality
and the weights of the means themselves are controlled by the rela-
tion between the dimension of the space of non-special variables and
the length of multiindex formed by the indexes of Bessel functions from
the kernel of the transformation {or by the parameters at the singular-
ities of Bessel operators contained in the equation). More exactly the
following statements are iralid
if n > 1 then for (o, ,8) = (“ v+ 3) and for a from (0, "T‘l), A from
(0,v+1) :

(2) [rotBlgpraatd( fyll , < ClretBitee A7 1(f)||;;
if n =1 then
(3) 14 E 0PI f)oo < Clly¥ ™% fill2;

if n = 0 then for A= (11 ++3,...,0m+ 3) and for 3 from (0,v + 3)

(4) IF g4 (f oo < ChrP = a1 ()1

Here ¢, 5 and v are m-components multiindexes: §— 1 denotes the fol-
lowing multiindex: (81 — 1,...,0m — 1).
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m
aP9 denotes the spherical mean of ||* with the weight [mIpHyf' and
=1
the allowed values of the parameters p, ¢ in the inequalities above are
ruled by the dimensions m,n and the value of v.
Further we use (2)-(4) to derive estimates of solutions of the follow-
ing singular equation:

(3) P(-Ag)u = f(z,y),

2% =1 8 /& Ou _
WhereA,Bu‘:"gf — + -—_——-—(y-’——),k~:2v-+1,j:l,m'
— dx? Zjl g By; N7 By, J J ’

Pisa polynomial with real coeflicients.
More exactly, under the assumption of non-negativity and weighted

D)
P12 +nl?)

the equation (5) are valid.

(i) For n > 1
ifp>-n,g¢g; >~-1;7=1,m then

summability of the following estimates for solutions of

(6) ”ra-i-lﬁl—z)—lq\ao,;?u”m < C”Tcxﬂﬁl—p—lql—lJo—n—p,ﬁ—q—luul

for (o, 8) = (0. b1, . Bn) = (p+——,q1+ AR ,qm+ m ) and for
any (a, ﬁ)suchthataé(p,p—f— 52), B85 € (g5,9; + )J T,m
(it) For n =1

1fp> '—1, qj -t "_cl —]--jz _"’mthen
LAY
(7) irF oyl < O Hy 1,20, ),
i=1
(1‘-’&2) FOI' n = O, m> 1:
if g > —1; =1, m then
(8) rlB=lal 08y < Cfril-lai=160.8-a=1y)

for 8= (g1 + 521, O B %ﬂ) and for any 3 such that 3; belongs to
(g5.9; + %";); j=1m.

All the constants in the inequalities (6)-(8) depend only on m,n,
k.p, q
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1. Preliminaries

In this section the necessary notations and definitions are intro-
duced; we also recall the necessary properties of Fourier-Bessel trans-

formatmn
k &f (k1. . km def (211 4 1,...,2¢m + 1) - a positive multiindex;

k1>0foranyl—1m[k]—kl+ -+ ky, - the length of k.
R, = = {y = (yl,---,ym)|yz >0 for any I = m}
n+4m def
RIHm & {(m,y) [ zeR™y¢ R;j_)}.
Hereafter all the absolute constants generally depend on k, m and n.
S(r) denotes the following sphere: { z € R® ’ |z| = r}.
S (r} denotes the following spherical segment:
{(:::,y) € R} ’ lz|? + Jy|? = ,.2}, where | =1, m;
57 (r) denotes the following spherical segment: {y € R}, ’ ly| = r}.
B7¥(r) denotes the followding segment of the ball: {y € Rf, ’ lyl < r}.

Loe®y™) < {r 11 = [ Hy FlelPdsdy)” < oo} it p s

Rn+m
finite;
n4my def 01 ok
Lo (RT™) & {£] £ =sup [T o} (z,)] < oo}

The set of infinitely smooth functions with compact supports defined
on R**™ is denoted by C§°(R™t™).

The subset of C§°(R™*™)} formed by functions which are even with
respect to y is observed; the set of restrictions of elements of that subset
to RT™™ is denoted by C§%,.,(RT™™).

This C§%ye.(RTT™) will be the space of test functions.

Distributions on C§%,.,(R}™™) are introduced (following for in-
m
stance [1]) with respect to the degenerative measure [] yf‘ dzdy: for

=1
any @ € Cuen(RTT™),

9) (f, )= 1w f (2 v)e(z, y)dzdy
Rn-l-m =1

4
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Thus all linear continuous functionals on C§%,.,,(RT™) which could
be given by (9) (with f e Ll,k,goc(Rﬁ."’m)) are called regular (and

the corresponding function f is called ordinary).
Fourier-Bessel transformation is introduced following [2}, [5]:

f(&n dEffbdeFf /R Hy; Ju (mn)e ™ ¢ f(z, y)dzdy,

=1

where j,,( ) is the normalized (in the uniform sense) Bessel function:

Dulz)

Ju(2) = oy
Note (see {2]) that

m
fey) = Cf f LI o dor (myn)e™ € £ (€, m)dedn.
R /R =1
The generalized convolution is introduced (see [4], [5]):

FEMES » 9)(En)
d:ee/m Lngysz;f(m L T = Em Yty ym)dady,

such that ﬁg fq (see also [3]).

Here T} f(z, ) de{T"“ b f,y) S TRTR - Tpr f(z,y), Tyt deno-
tes (for { = 1,m) the generahzed shift operator with respect to the cor-

responding special variable {see [4]):

def

T;,Zlf(y) d;gfcfo f(\/yf + h? - 2yhy cos 9) sin®* ! 6d8.

Note (see [4], [5]) that

[ Mntsomswin= [ T smganin

(H =1 (+y I=1
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2. Estimates of Fourier-Bessel transforms of measures:
the general case

We start our investigation from the case of several non-special
variables: n > 1; the critical cases of n = 1 and n = 0 will be considered
in Section 3 and Section 4 correspondingly. The case of a single special
variable (m = 1) is investigated in {7}, [8] so hereafter m > 1.

Thus let m > 2, n > 2.

Now (as in [8])} we have to define the weighted spherical mean and
the corresponding distribution of weighted spherical averaging:

P FY (Y= (£)(r)
def f 2 Py® -y | f(rz, ry)|2dSe.,
Sm(1)

def 712, def 7
= (0w, [FPY= (a2, 1)

where p > —n; ¢ > —1,1 =‘1,‘m.
Then we have to estimat;e

def —~ ire-
gz y) Sy = /S ( )IEF’E ‘EHm du (ryem)dSe
m(1
+

1
= [ 2% e (TYmTm) / |€|PemE x
/0 " T 1-n2)

d7tm

X Thq‘ju (Tylﬂl)d85,n 1---stime— B
£[1 i 1 ) 1 _/—1 — 7?,2-,1
1 4 p‘l_vnm ¢
—_ m—1
J

nﬁ;"jum(fymnm) el Jm— 1(7‘ym—1"’?m—1)x
0

X

/ glPeir=4x
S.T_2(V 1’_'7?711 "?m_,l)
s VI— dimet  dnm

x 1 o3 (rym) @S¢ m,.. 1 s
=1 1- n‘rzn—l - n’?n \/1 - T’?n
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1 A 1-n2,
=/D n?nmjvm(rymnm)A T?gzm T v TYm—1Mm-1) - ..
/Vl*ﬂgn*""ﬂg

0

0 s (ram) (1 — i) 3 f

S(\/W) e dSe x

1

X e ..
V1—|n?

dnm

(see for instance [9], p. 155)

= /0 lnﬁz"yum(rymnm) f viT Movet Fu s (PYm—1Thm—1) - -
/\/*:‘—n N
A 1 2 AT \/ITW
x (ry/T=TnP|2]) %" Jusa (ry/T = [nP|a)dn

™ 1
2—n — -
=r Mol = [ [ ”‘/ T ™" T (TYmIm ) X
=1 0

1—-nZ,
AR = S
1 nm_..._ng Y
/0 n T, (ryem ) x
A=) E S e R
TP 7 Jaz(rv/1— |n?*z[)dn
=7t _IVI|$| Hy—w/ A= (YT ) X

1-n2,
]
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i 7P T, (ryam ) (1 — Inf?
x Juza (rv/1 - Infjel)dn

Since |J, ()} < < for ¢t > O then

Vi

n»_-t22—2
) X

m
m+2»—-n—1k| 1 -1
lgr(z )| S Cr ™ = H i

. _ 2 QI m—%
Lmu Inf?) I=I dn

L—n--] | m __2L
]33| Yi
I=1

=Cr

(ifp> - ,qz>—‘-ll—1m)
This means that Fourier-Bessel transform of o, is a regular distribution
(while o, itself is a singular distribution).

Further similarly to [8] o(f}(r) = (f*gr, f), and for non-negative f
the last expression is less than or equal to

m k; , m k (2, 9)| T7 ~ ¢,y) dedydtd
LZ*’“EHI € n)/fli“"‘zl;[lyl lgr (2, 9| Ty f (x ~ €, ) dzdydédn

(since the generalized shift operator preserves the sign).
Hence

U(f)('r) < CTE:%:Lﬂ<f,f* (]x]"nT_l 2 Y, ?z‘))
=1

k

=2 (A (| Hyl ).

=Cr

On the other hand

m

A= [ *) = cler _?‘Hn“% =

{=1
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{see for instance [9], p. 155 and [7]).
Therefore for any non-negative f from Lljk(RT'm) M Lo, k(Ri‘*m)

o <or=F [ [ el [Ty e sty

(+) =1

on (0, +00).

This is actually the claimed estimate (2) for {a, ) = (%5t,v + 3).

In order to extend it to any « belonging to (0, "T“l), 1 belonging to

(0,1 +3), ... ,Bm belonging to (0, v, + 1) we have (as in [7], [8})

to introduce f.,,‘5d=eff * (|a:|'f_” Hyf‘_k‘_l), where 'ydéf“—“z—f—_—l > 0,
i=1

Jlé_gfz"‘—_iﬁ‘—“ > (0. Then we apply the last inequality to this new
function f, 5.

This yields (under the same assumptions about f):

supro T8l gp— 25t +eq— 2H8(£)(r)

Ry
<o [ e “Hyﬁ‘ "f(z,y)Pdrdy.

(+)

(10)

The right-hand side of (10) is equal to C'/ ratlBl-lga-nb~1¢yqp
0

Thus the following statement is valid:

THEOREM 1. Let m > 2, n > 2, k be a positive multiindex,
p > -n, ¢ > —1 (I =1,m). Then there exists C such that for
any non-negative f € Ly x(RIT™)NLy (R™™™) for any a € (0, 21y,
B e(0,8) (1=T,m)and for (a, ) = (22,5, ..., Em)

2 27

(11)  fretBlgPtaatf(f), < ClretPImlge A=t ().
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3. The case of a single non-special variable

Let n = 1. Then similarly to Section 2

L
gr(z,y) = fs " Pe™=e [ [ a dui (ryem)dSe,n
(1

+ =1

1 V1-n2,
= /0 ng’rbn-?um (Tymnm) f n‘?f:n—_ll jym—l (’rym—lnm—l) e
0

0

i/ 1—|nj2r | ,—iz\/1—|n|*r d??
x le +e —_—
( ) Vv1—1Inl?

1 1-n2,
= 2/ T Jum (PYmTm) / nﬁ:‘_"l’ s (TYm—1Mm—1) - -
Q o]

/\/1_—l7vl-""+_vﬁ

0

(1 — ) en{ o, (ryrm) x

. —1
0P g (ryam) (1 — ) *7" cosray/1 — Infdn.
Since \cosr:c\/l - |n|2‘ < 1 then we obtain:

o7 = lgr{z,y)| <

15

forp> -1, q > %L— 1,1=1,m.
Therefore for positive r

aPI(f)r) < Cr_%l<fb(ﬁyz%)’ |-ﬂ2>
=1

(12) Ry
—or / 1o " 170,9)2dy
R =1

(cf. (1.3) of [8)).
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4. The case of absence of non-special variables

Let n = (0. Then

= def . .

f(n)=e/R YRy e Ym)d () - - Gu (Ym e ).
(+)

Therefore

m

def - .
0r(z,y) & 57 = f T dus (ryum)dS,
5+(1) ;5
™ 1
=7 Hylwf n?nm_uvam("'ymnm)
i=1 0

1-n2,
—Vm-
] nm 1 o (TYm—1Tm—1) - - -
0

/ﬁ—ng—---—nz

0

g1—v1

ny O, (ryym)dn - dg,.

Hence for q; > %‘ ~Li=1m
—~ “ —~% _m i a-% def k| T
|or,,|§C'r_|”1Hyl 27'_7/ Hnl *dS,=Cr™2 Hyl :,
=1 5+(1) =1 =1
So for any non-negative f from Ll,k(RE’jr)) N Lz,k(RE’l))

9(f)(r) < Cr~ f Hyl% 1 F (y)dy on (0, +c0)

(+J£ 1

and (similarly to Section 2) for any §; from (0, %L), I=1,m

18] ,0.9+8 Br— 1
(13 suprilo®s (f)(r)sc/ 18 F e

Ry =1
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The right-hand side of the inequality (13) is equal to

c| N / [T~ ()as, ar

+(r) =1

= C/ / r"@"‘mHﬂfi‘_lfa(rn)rm_ldsndr
0o Js+@)

i=1
= C|rP1=1e%E =1 £y

Thus the following statement is true:

THEOREM 2. Let m > 2, n = 0, ¢ > —1. Then there exists
C such that for any non-negative f from L1 x(R{},) N Lo,k (RYY,) for

{+)
B=(%,..., %) and for any 8 from (0, &)

IrPla® 4B £) oo < ClIrIP1=2a%8 =1 (1)1

5. Estimates of solutions of singular equations

In this section we apply the above results to estimate norms of
solutions of (5).
We will start from the general case of several special variables.
Let u from L, (RT"™) satisfy (5) at least in the sense of distributions.
Then @ also belongs to Lg x(R}T™) (see [2]) and

(19) P(I] + Ini®)a(g, n) = f(&,n).

P(IEP + I*) € LokioclRET™), 4(€,m) € Lakioc(RTT™) therefore
fle,n) e Ly kioc(RET™) that is f(&,m) is an ordinary function.

Thus (14) is an equality of ordinary functions and hence the following
division is legible:

fi&,n)

a(€,n) = PUEE + |0

€ Lok(RE™).
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f€ )
Now we denote ———="——=—
P(I¢* +n?)
negative ang belongs to Ly x(R}T™). Then g satisfies the conditions
of Theorem 1 and u =g.

by g(¢,n) and assume that ¢ is non-

This implies the following statement:

THEOREM 3. Let __igé_@_z_

P + [n]?)
Li(RT"™), u from Lz i (R?T™) satisfy (at least in the sense of dis-
tributions) the equation (5). Let p > —n, ¢; > —1;j = 1,m. Then
there exists C such that

be non-negative and belong to

[[retlBl-p-idlgeiBy|| , < C||retiPl=p=lgl-150-n-pO-a=1y)

for (a, 8) = (&, B1,- ... Om) = P+ 2352 @1 + B, . ... + 28) and for
e k. . R
any (o, 3) such that a € (p,p + —21)1 B; € (g9 + %) j=1Lm.

On the same way (12) yields the following statement:

)
P(£2 + |n]?)
L1 e(RYT™), u from Lok (RYT™) satisfy (at least in the sense of dis-
tributions) the equation (5). Let p > -1, ¢; > %— ~1; 5 =1,m. Then
there exists C such that

THEOREM 4. Let be non-negative and belong to

ka

Lkt L
7% 0Pl < Cf [ ™ w0, 1
j:l

And, finally, Theorem 2 on the same way leads to

f(n) i) ,
W c Ll,k(RH))’ W > 0; let u from

Lz,k(Rﬂ_)) satisfy (at least in the sense of distributions) the equa-
tion (5). Let g¢; > —1; § = 1,m. Then

THEOREM 5. Let

1Bl 1al 0B < CllplBl-tal=150.8-a=1\
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for 8= (B1,...,0m) = (g —I—%‘,...,qm-i—%ﬂ) and for any 3 such that
Bi€ (g g+ %) i=T1,

1
m.

REMARK. In the inequalities (2)-(4) (correspondingly (6)—(8))
the constant C depends only on m,n, k, p, q.

REMARK. Under the assumptions of Theorems 3-5 the right-hand
sides of the corresponding inequalities converge.
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