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A NOTE ON RANDOM FUNCTIONS
BuM IL Hong*, SuNG HEE CHOI, AND NAHMWOO HAHM

ABSTRACT. It is known that one can generate functions distributed
according to r-fold Wiener measure. So we could estimate the aver-
age case errors in a similar way as in Monte-Carlo method. Hence we
study the basic properties of the generator of random functions. In
addition, because the r-fold Wiener process is truly infinitely dimen-*
sional and a computer can only handle finitely dimensional spaces, we
study in this paper, the properties of generator for an m-dimensional
approximation of the r-fold Wiener process.

1. Introduction

For some problems, it is difficult or even impossible to study the com-
plexity analytically. For example, in the global optimization problem,
where one wants to approximate the global maximum of the function
f € Cr, the distribution of max f(z) is unknown for » > 1. Hence,

for this problem, we do not even know the average error of the most
trivial, zero algorithm. There is difficulty even for the relatively simpler
problems such as the integration problem. Indeed, as we have seen in
[1], for Simpson's quadrature we know that the average error equals
© (n~min{tr+1}) 1 but unfortunately we do not know the constant in
the ©-notation. However, if we are able to generate random functions
distributed according to the r-fold Wiener measure w,, we could allevi-
ate the problem by employing random methods. Hence, in this paper,
we study how to generate r-fold Wiener random functions. The general
references for this paper are {2] and {5].
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IThe ®-notation is used for asymptotic equalities. That is, f(n} = ©{g(n)) means
that there are positive constants ¢; and ep such that c1g{n) < f(n) < cag(n), vn.
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2. Preliminaries

We assume that the function space is equipped with the probability
measure (i, which is a variant of the r-fold Wiener measure w,. We also
assurne that a function f, as a stochastic process, is given by

f(z) = filz) + fo{l —2), z €[0,1],

where f, and f, are independent and distributed according to w,. It is
a Gaussian measure with zero mean and correlation function given by

1 _nr _ar
Mo (f(z) F(y)) = [F F(2)f(5) wrldf) = /0 (z r!m (v r!t)+ i

where (z — t);+ = max{0, (z — t)}. Therefore, in order to generate the
random process f distributed according to u,. {we denote this by u.,.-
random function f), it is enough to generate two independent w,-random
functions f; and fa. Therefore, we provide the generator for the r-fold
Wiener process only.

3. Random function

The r-fold Wiener process is truly infinitely dimensional, i.e., for every
finite dimensional subspace A of CT[0, 1], the probability that f € A is
Z€ero.

Consider the problem of approximating f on the average with the
error measured in Ly-norm. Given m and information

where L;'s are any linear functionals, the average case error explained

e($, Tmy Laj wr) = /M, (If = 6T (£)IZ)

in [1] is minimized by the algorithm ¢(y) = ¢}, (y) being the conditional
mean of w,( - [ (f) = y). Such a minimal error is called the radius of



Random functions 717

information Iy, and is denoted by e*(T',,, L2; w,). Hence, due to linearity
of ¥,

e = Y w6
i=1
for suitably chosen functions ¢; € Lg. Actually, the same ), mini-

mizes the average case error of approximating f in any other norm. In
particular,

Mo, (If = 4T FNIF) = min Mo, ({f — SCm(IDIE)

for any ¢ > 0 and any p > 1 including p = co. Moreover, for any
linear operator S, S(3¥, (I').(f))) minimizes the average case error of
approximating S(f);

e*(Cm, S wr) = e*(S SR wy)

= min M, (I15(f) = T (2.

We specially focus on I'7, consisting of values of f() at equally spaced
points,

(4) ) = 119 (5) e 1 (5)]

to have the following theorem that is the main theorem of this paper.
THEOREM. Let I', (f) be given by (A). Let
e’ (Ir,,La; wp) and e (I, Int; wr)

be the average radii of I'}, for Ly-approximation and integration prob-
lems, respectively. Then, for r > 1,

e (M La; wr) = © (%) = e* (I}, Int; w,).
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ProoOF. The upper bound follows from
e* (I, Int; we) < e* (7., La; wy) < e (I‘?n,Int; wo),

which is due to (3] and the known fact that e* (T9,, Int ; wp) = ©(1/m).

Hence, to complete the proof, we only need to show the lower bound
for the integration problem. Let g be distributed according to w, and
f be distributed according to classical Wiener measure wg. Since w, =
wp o D™, we have f(z) = g™ (), i.e.,

OE /(m_tl), £(2) dt.

Therefore, the average radius of I'], for an integration problem satisfies

(e2(IT . Int ; w,))?

M (f o(e) ds — 4:(T3) ) }

_ v, : 2
= M, ( | [ S s - %(P?n(f)))

Hence, our problem is to estimate from below

c(m) = |/ Muy ((S) - U5CUN),

1 T e 3yl

Of course, 9§ is the optimal algorithm for the problem of approximating
S(f) and f is distributed according to wyq.

Since S is a functional, the average case error e(m) is the same as the
error of approximating S by ¥ in the worst case setting with respect to
the unit ball in the reproducing kernel Hilbert space generated by wg. It
is known, see e.g. [4], that it is the following Sobolev space:

where

W3([0,1)) := {f: f(0) =0, f is absolutely continuous, and f' € Lo}
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equipped with the norm | f| = || f||2. That is,

e(m) = inf sup {IS(f)—¢(F° (I ew and | (f'(t))?dtg}
—sup {IS(f)]: f€ W, If 2 <1, and f(z;) = 0,¥i).

Take )
r—xim1, if z € [24-1,my,

f(:l?):{ I — T, if = € [my, x4,

where m; = (z; + z;_1)/2. Of course, f € W3, f(x;) =0, for all i, and
f(f)? = 1. Then,

1 1 _pfr—1 1 1 T — -1
S(f)=/ f (@ t)1+), f®)dtdzr = f f(t)/ ( t)l)! d dt

ff(t)(l a=3[" 108

i=1 v Ti-1

The integral over [x;_1,m;] equals

fm' (t—zi 1)(]L t)r dt

(1 — m,—)’""'»l i —Ti—1 (1 el .’L‘i_l)r+2 . (1 — mi)"+2
(r -+ 1)! 2 (r+2)! (r+2)! °

and over [m;, z;] equals

/a:m (mz _ t) (1 ;'t)r i

_(Q-m) -z (L-m)™? (1 —ay)t?

(r+ 1) 2 (r+2)! (r+2)t

Thus

S(f) = i (C(%&—l) +((zia +h)—2¢ (-’L‘i—l + g)) ;

i=1
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where {(z) = (1 — z)"72/(r +2)! and h = 1/m. Note that

2
Clziy +h) =Cmica) + A (Tima) + %‘ ¢N7i-1),

h 2 -
¢ (It’—l + -2*) = ((x;a)+ gC'(m‘i—ﬂ + % ¢"(zi-1),

where Z;_1 € [#;_1,7i] and %;—; € [x;-1,2;]). Note also that ¢"(z) =
{1 —=z)"/(r!). Hence

Clzim1) + (@1 + ) —2¢ (mi_l + -hi)

2
h? - =
=m (2(1—.’1,'1'_1) —(l—mi_l) )
h? ,
ZH(Z(I—{]’L‘) —(1—:{}2'_1) )
Therefore,
h2 m m—1
502 g (2350 -0 - S
=1 i=l
h2 ™m h2 m—1
=g | L0mm ) = | e
i=1 7=0
h 1-h h (1 _ h)r-}-l
> — "dr — = — -
4 (/0 z" dz h) 41"!( r+1 h)
= —h— (14 ©(h))
C4(r+1)! ‘
This completes the proof. O
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