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A TRANSFORMATION FORMULA ASSOCIATED WITH
THE GENERALIZED HYPERGEOMETRIC SERIES

KEUMSIK LEE, YOUNG JOoON CHO, AND TAE YOUNG SEO

ABSTRACT. The authors aim at presenting a presumably new trans-
formation formula involving generalized hypergeometric series by mak-
ing use of series rearrangement technique which is one of the most
effective methods for obtaining generating functions or other identi-
ties associated with (especially) the hypergeometric series. They also
consider a couple of interesting special cases of their main result.

1. Introduction and Preliminaries

The generalized hypergeometric function with p numerator and g de-
nominator parameters is defined by

Qy, -, Op, _ — (01)k(0!2)k"'('1p)k2_k
L [ﬁl,--- B "‘} = BB Boe B

where (), denotes the Pochhammer symbol (or the shifted factorial)
defined by

ala+-1)---(a+n-1 if neN:={1, 2,3, ---},
(1.2) (a)n:={1( FL e ) ifni(}, { ;

In terms of the familiar Gamma function I'(z) with its fundamental
functional relationship I'(z + 1} = 2I'(2), (@), can be rewritten in the
form:

(1.3) (@) = Lo +n)
HNa)
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There are several useful equivalent expressions of I' whose Weierstrass
canonical product form is given by

o0

(1.4} {1"(.2)}_1 = ze* H (1 + E) e %,

k=1 k

~ being the Euler-Mascheroni constant defined by
: . ny N
(15) = lim (kz_:l -~ log n) = 0.577215664901532 - - - .

From (1.2), it is easy to deduce the following elementary yet use-
ful identity (in particular) in carrying out the above-mentioned series
rearrangement technique:

(16)  (Q)nog = ﬁ% (0< k< n: k neN).
For o« = 1, we have
(L7) (n— k) = ((‘_lff! (< k<n),

which may alternatively be written in the form:

(—1)%n!
(1.8) (~n)e ={ (m—K) (0 <k <m),
0 (k> n).

Recall the generalized binomial theorem

(e 9]

(1.9) (1-2)2=)" %zk (2] < 1).

k=0

Two well-known series manipulation formulas were recorded in various
literature (cf. Rainville [5, pp. 56-57]):

(1.10) Agn =3 Arnk
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and (in what follows, [z] denotes the greatest integer part in z)

o n o [3]
(1.11) SN Akn =3 Aknsk

n=0 k=0 n=0k=0

which were also presented in the work of Choi and Seo [3] who investi-
gated many other such formulas rather systematically.

Srivastava and Panda [7, p. 423, Eq. (26)] presented a definition of a -
general double hypergeometric function:

prg;k (ap) : (bq) ; (ex) 5 T,y
i [ (@) £ (Bm) 5 () 1 ™
(112) i ?21 (a’j)r+s _?:1 (b.?)r H?:l (cj)s x_ry

B r8=0 Hz’:l (aj),._i_ﬂ H_;nzl (6_7)?. H?=1 (’Y-?)s 7! E,

where the several cases of convergence conditions are given in [6, p. 64].

The object of this note is to present a presumably new transformation
formula associated with generalized hypergeometric series expressed in
terms of the above-recalled Srivastava and Panda’s function (1.12), which
is more general than the one defined by Kampé de Fériet {4] (¢f. Appell
and Kampé de Fériet [1, p. 150, Eq. (29)]), by making use of series
rearrangement technique which is one of the most effective methods for
obtaining generating functions or other identities involving (especially)
the hypergeometric series. A couple of interesting special cases of our
main result allied to a known identity are also considered.

2. A Transformation Formula

We start with defining, for convenience, by

b1 bz, bq;

(a1), (a2), - (ap), [( —-z) +tz]”
Z n! ( bl) (b2}, -+ (bg)y, !

S(z,t) : = pF, [“1’ 92 -0 9 Y1 _ g 4 tx)
(2.1)
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By employing the binomial theorem in (2.1), and using (1.11), (1.6)
and (1.7), we obtain

(2.2)
S(z,1)
- —nong 1y ponl-b—m,...,1—b,—n;
= 27 2 27 ’ ’ ’ q ’
Z%‘H'QFP[ l-a;—-n,1—az—n,...,l—a, —n;

(~1)rte 22 ] (A —=2)" (a1), (a2), -~ (8p), "
(1-—2)2 (b1),, (b2),, -~ (bq),, .l

On the other hand, by applying the binomial theorem in (2.1) repeat-
edly, we find that

tn

& (m1), (a2), - (ap), 1 —2(1 =1)]"
S@8 =2 = G ),

()i (1) (a1), (a2), - - (ap), =¥ ..
‘ZZZ !%Jmnwfmﬂm

n=0 k=0 j=

which, upon making use of the following series rearrangement identity:

k
(2.3) ZZ By ; :ZZ Bk,

immediately yields

B oo Troon (—ﬂk( ]_)(al) (012) (G,p) CII n.+j
(2.4) S(m,t)—;;; TS . (62) N

If we apply (1.11) to the first double summation of (2.4) and set
k — j =k’ in the third summation of the resulting series and then drop
the prime on k, we readily get

(2.5) S@n=3 S5
n=0
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where, for convenience,

(2] -2 , "
R (—n)k (—n+ k)25 [Tz (ai),_; =
(2.6) Si( )-—ij 2 SR T, ()

It is not difficult to see that

(2.7) (—n)2k (—n+ 2k)2j _ 227 (_%)k+j (_% + %)k+j

(1)2k (3), K

and

(2.8) (=n)oks1 (—n + 14 2Kk)9; _ _n22»’" (_% + % kg (_% + 1)k+j
' (L)2k+1 (3), k! '

In view of the familiar identity

[n—l

n [%] T]
(2.9) ST A=) A+ Y Awmn (nEN),
k=0 ;=0 k=0

the inner sum of (2.6) is separated into even and odd parts so that, using
(2.7), (2.8), and {1.6), S7(z) can be expressed in terms of Srivastava and
Panda’s function defined by (1.12):

1) Sife) = S h p) e Qe

where, for convenience,
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and

Q(z)

. p2:iq;0
o Fﬁ:p;l

(2.12)

(—1)P19 42, 22

Now put (2.10) into (2.5) and equate the coefficients of ™ in the
resulting equation and (2.2). We finally obtain an (presumably new)
interesting transformation formula for the generalized hypergeometric
series:

(2.13)
4x

-2, %+ 1-b—n,...,1-b,—n;
(1-z)?

29
l-a—-n,...,1-ap—n;
=1 —x)7" [P(z) — nz Q(z)],
where P(z) and Q(xz) are defined by (2.11) and (2.12).
Choosing

Q+2FP (—1)p+q

(2.14) p—-1=1=¢q, bi=7v a=v—-5b and ay=v—c

in (2.13) and considering an identity in Rainville (5, p. 106, Example 8],
we also get a simpler yet interesting transformation formula for 3 Fj:

n

) (=1 % (y = b= )k (v — bk (7 — Q) ™%

Z M (n =) (s
"ka b: c;
(215) - 3F2 T
l—v+b—-k,1—v+ec—-k;
(Y= O (v — ¢)n
= Alz) — nr B{x B
T2t [A(2) - no B(@)
where, for convenience,
(2.16)
A(z)
+1:

| ol

n
21,0 5, — Il—y—n;—;
= F0:2;1[ 2 YT 4, 932]

l—y+b—n,1-v+c—n;3;
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and
(2.17)
B(z)
n 1 n
_ p21o "3+ 5l l—y—n;—; _ 2
’ 0‘2‘1[ — :1-7+b——n,1—7+c—n;%; 4z, 27| -

It is noted that the special case of (2.15) when vy = b+, with the left-
handed member of (2.13) replaced by (2.14), yields the familiar trans-
formation formula for 3F5 due to Whipple [8, p. 267, Eq. (7.1)]: For
n € Np, and b and ¢ being independent of n,

—n, b7 L
3F2 1-b~—n, 1—-c—mn; o
(2.18) o
1
{1\ —3n, —zn+s5, l—b—c—n; —4=
(1 :c) 3F2 l—b—ﬂ, l—C"'n;(l-—.',B)z ]

which also appears in the work of Rainville [5, p. 88} who proved it by
making use of the series rearrangement technique. It is also interesting to
check that the special case of the right-hand side of (2.13) whenp—1=
1=gq, a; = b, as = ¢, and b; = b + ¢ readily reduces to the right-hand
side of (2.18).
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