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FIXED POINTS THEORY ON CLOSED
2-DIMENSIONAL MANIFOLDS

Eun Sooxk KanG

ABSTRACT. Let f: M — M be a homotopically periodic self-map of
a closed surface M. Except for M = 52, the Nielsen number N{f)
and the Lefschetz number L{f) of the self-map f are the same. This
is a generalization of Kwasik and Lee's result to 2-dimensional case.
On the 2-sphere §%, N(f) = 1 and L(f) = deg(f) + 1 for any self-map
f:5 -85

1. Introduction

Let M be a closed smooth manifold and let f : M — M be a continuous
self-map. There are two well-known invariants in the fixed point theory;
the Lefschetz numberL(f) and the Nielsen number N(f).

The Nielsen number N(f} of a selfmap f gives a lower bound for the
number of fixed points of f. Unfortunately the Nielsen number is difficult
to calculate. On the other hand, the Lefschetz number L(f) is readily
computable. In [2], Brooks, Brown, Pak and Taylor show that for a self-
map f : M — M on a torus, N(f} = |L(f)|. This result is extended to
compact nilmanifolds ([1] and [5]) and solvmanifolds ([10}).

But Anosov shows that there exists a map f : K — K of a Klein bottle
K such that N(f) # |L(f)|. Kwasik and Lee restrict the class of maps
to homotopically periodic maps when extend the above result to infra-
nilmanifolds [7]:

THEOREM 1.1. Let M be an infra-nilmanifold and let f : M — M be
a homotopically periodic self-map. Then N{f) = L(f).
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A continuous self-map f : M — M is called homotopically periodic if
there exists an integer k& > 1 such that f* is homotopic to the identity.

The purpose of this paper is to study the fixed point set of self-map
on closed 2-dimensional manifolds. We will show that the above result of
Kwasik and Lee is true on a surface of nonpositive Euler characteristic.

2. Results

Each closed surface admits a metric of constant curvature. There are
three cases depending on the Euler characteristic of the surface. If a 2-
dimensional manifold X is simply connected then X is isometric to one of
the Euclidean plane E?, the unit sphere S? or the hyperbolic plane H?. If a
group G acts properly discontinuously and freely on X as isometries of X,
then the quotient space X/G is a Riemannian manifold and the natural
map X — X/G is a covering map with covering group G. Conversely, a
closed surface of constant curvature can be obtained as a quotient of X
by a discrete subgroup 7 of isometries which act freely.

It is known that the isometry group of $? is O(3), and Z, is the only
nontrivial group which can act freely on $2. This implies that there are
only two closed surfaces with positive Euler characteristic, namely the 2-
sphere S? and the real projective plane RP2. If a closed surface has zero
Euler characteristic, then it is the torus or Klein bottle. All the other
closed surfaces have negative Euler characteristic and admit metrics of
constant negative curvature, equal to —1.

The following is a basic notion in fixed point theory;

DEFINITION 2.1. Two fixed points x and y of M are said to be f —
equivalent if there is a path w : [0,1] — M joining z and y such that w
and f ow are homotopic relative to the endpoints.

The fixed point set fix(f) = {z € X|f{z) = z} can be partitioned by
the f-equivalence. Points in a path-component of fix(f) are f-equivalent.
Each fixed point class F is then an isolated fixed point set, with a fixed
point index ind(f, F') defined.

A fixed point class is essential if its fixed point index is non-zero and
N(f) is the number of essential fixed point classes. We begin with the
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following lemmas.

LEMMA 2.2. Let f: M — M be an isometry on a closed surface M of
nonpositive Euler characteristic. Suppose that f has only finite isolated
fixed points. If x and y are distinct points of fix(f), then they are not
F-equivalent.

PROOF. Suppose that z and y are f-equivalent. Then there exists a
path w : [0,1] — M from z to y which is homotopic to f ow relative to
endpoints. We may assume that w is a geodesic. Consider the universal
covering map p : X — M. If  lies over z, lift w to a path & : [0, 1] — X
starting at Z. Let § be the end point of @. w; will denote the reverse path
of w. Then fow; is a path from y to z. There is the lift fow; : {0,1] — X
of f ow;, which begins at §. If the end point of fow,; is Z, then & and
f ow, must overlap, for there is only one geodesic joining Z and gy [4].
Therefore f owi(1) # &. This implies the loop w - (f o wi) is nontrivial,
which is a contradiction. 0

LEMMA 2.3. Let M be a closed manifold of dimension > 2 and non-
positive Euler characteristic and let f be an isometry on M. If f has only
finite isolated fixed points then each isolated fixed point is essential.

PROOGF. Suppose z is an isolated fixed point which is inessential. If A
is the Jacobian matrix of f at z, then det(I — A) = 0 ([6]), where I is
the identity matrix. Then A has eigenvalue 1. Hence f must fix at least
1-dimensional subset. But every fixed point is isclated. a

We investigate whether the equality in the result of Kwasik and Lee
does hold in the case of 2-dimensional manifold. First we will show that
we can restrict our objects to isometries.

THEOREM 2.4. Let f : M — M be a homotopically periodic self-map
of a hyperbolic surface M. Then there exists a hyperbolic surface M’ which
is diffeomorphic to M (viag: M — M'), and an isometry '+ M' — M’
such that go [ = o g.
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PrOOF. We see that M = H?/7 where 7 is isomorphic to a subgroup
of PSL;R. Let e(M) be the H-space of all self-homotopy equivalences of
M. The homotopical periodicity of f implies that f € e(M). The image
of f under the natural map

(M) — mo(e(M)),
where my(e{M)) is the group of homotopy classes of self-homotopy equiva-

lences, generates a subgroup Zy = ([f]) of mo(e(M)). Since M is a K (x, 1),
Z,; induces an abstract kernel

¢ : Ty, — Out(r) = mo(e(M)).

In order to realize Z; as a group action on M, it is necessary for the
abstract kernel to have an extension

l=nm—oE—>Z—0

([8])- Since 7 is centerless, the abstract kernel ¢ : Zy — Out{) has such
an extension. It is well-known that such a group £ can be embedded into
PSL,R as a discrete subgroup, say ¢ : E — PSL,R. Moreover, there
exists a diffeomorphism § : H? — H? which conjugates m into ().

Then clearly, M’ = H?/w(x) is a hyperbolic surface, and § induces a
diffeomorphism g : M — M’. Let f € E be a preimage of the generator
[f] of Zy and let f' : M’ — M’ be the map on M’ induced by ¢(f). Then
f" is an isometry of M’, and go f = f’o g holds. This completes the
proof. a

We are ready to plunge into our main theorem.

THEOREM 2.5. If a selfmap f : M — M on a closed 2-dimensional

manifold M of nonpositive Euler characteristic is homotopically periodic,
then N(f) = L(f).

PROOF. Every 2-dimensional flat manifold is an infra-nilmanifold. So
the equality comes from Theorem 1.1. We shall work with a self-map f
on a closed hyperbolic surface M. By Theorem 2.4, we may think of f as
an isometry. Suppose that f is an orientation preserving isometry. The
fixed point set has codimension 2 and hence it consists of isolated points.
In the proof of the preceding theorem, we saw Zy = ([f}) acts on M. Let
M?Z be the fixed point set of that action. Using the following fact [3];

L({f) = x(M™),
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where y is the Euler characteristic, we can figure out the Lefschetz number
easily. By Lemma 2.2, any pair of the fixed point set are not f-equivalent.
Hence

L{f) = the number of isolated fixed points of f.

Since each isolated fixed point is essential from Lemma 2.3,
N(f) = the number of isclated fixed points of f.

Therefore, it follows that the equality N(f) = L(f) holds.

Now consider the case of an orientation reversing isometry f. The fixed
point set of f is the union of isolated fixed points and mutually disjoint 1-
dimensional submanifolds. In order to remove 1-dimensional submanifolds
which is fixed by f, we make use of homotoping f to a map g such that
Fix(g) is exactly the isolated fixed points of f. The result then follows if
we proceed as the case of orientation preserving map.

Let C,...,Cp be the components of Fix{(f) with dim C; = 1 and N,
be the total space of a small normal segment bundle around Ci, ie., a
1-dimensional tubular neighborhood of C;. Then f|y, : Ny — Nj and
flawn, is fixed point free. We will alter the map f only inside N;. Since N,
is strong deformation retracts onto Ci, there is a map f, which needs not
be an isometry, with the following properties:

1. f=fion M — Ny
2. f ~ f; on Nj relative to ON7; and
3. f|n, has no fixed points.

This is possible because C) is a circle which has Euler characteristic 0.
Repeating the procedure finitely many times, the isometry f can be ho-
motoped to a self-map ¢ such that Fix(g) consists of isolated fixed points
of f. |

The following shows that the restriction “nonpositive Euler character-
istic” in the above theorem is essential.

EXAMPLE 2.6. Consider an isometry f : S? — 52 which is a rotation
through 7 about the z-axis. There are 2 fixed points, i.e., the north and
south poles. They are f-equivalent and the north pole is essential. So
N(f) = 1. Since f, is the identity on both Hp(S%; Q) and H»(S%Q),
L(fY=1-0+1= 2. Hence N(f) # L(f).
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We investigate the relation between the Nielsen number N(f) and the
Lefschetz number L(f) of a self-map f : 5% — 52

LEMMA 2.7. For a self-map f : 8% - 5% which has degree d, N(f) =
and L(f) = d + 1. Therefore if d # 0, then N(f) # L{f).

PrOOF. Let gy : S' — S' is the complex map z — z¢ by which the
complex unit circle covers itself d times. Then f is homotopic to the
suspension S{gy) : §? - $2. We view S? C C x R so that the points of
5? are of the form (z,t), where z € C,t € R, and ||z||2+ |t]* = L. S(g4) is
defined by

| (20 ifz=0
S(ga)(z,t) = { (lzll - ga(2/l12]), &) if = # ©.

Since the induced homomorphism f, is the identity on Hy(S% Q) and (d)
on Hy(5%Q), L(f) =1-0+d = d+1. By the essential of the fixed point
class, N(f) = 1. We obtain the conclusion. O

The following shows that the equality N(f) = L(f) for a homotOplcaHy
periodic self-map f : RP? — RP? on the real projective plane RP?.

LEMMA 2.8. For a homotopically periodic self-map f : RP? — RP?,
N(f)=L(f)=1

_ PROOF. Suppose f: RP? — RP? is homotopically periodic. So a lift
f:8% = 5% of fisalso homotopically periodic, and the degree of f is £1.
Since the other Lift of f is f o A, where A is the antipodal map on 5%, we
may assume that the degree of f is 1 without loss of generality. Then f
is homotopic to the rotation R through /2 about the z-axis. Obviously
Fix(R) consists of the north and the south poles. On the other hand, the
lift fo A of f is homotopic to Ro A and Fix(Ro A) = 0. The self map
on RP? of which lifts are R and Ro A is homotopic to f and has a single
fixed point which is essential. Hence N(f) = L(f) = 1. ]

We close this paper by saying the conclusion of this paper.

COROLLARY 2.9. Let M be a closed surface and f : M — M a self-
map. Exclude the case id : 5% -+ S§? (ie, M = S? and f = id). If f is
homotopically periodic, then N(f) = L(f).
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