FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIVE MAPPINGS ON GENERALIZED BOUNDED METRIC SPACES

HAN GOO JUNG AND JEONG SHEOK UME

ABSTRACT. In this paper, we shall prove a fixed point theorem which is more general than that of Ćirić, Kannan and Rhoades.

1. Introduction

Dhage [2] introduced a new structure of a generalized metric space, that is, D-metric space and obtained fixed point theorems on this space. Dhage [2] and Rhoades [4] have extended some fixed point theorems satisfying certain contractive conditions on the D-metric space. In this paper, we shall prove a fixed point theorem which is more general than the results of Ćirić [1], Kannan [3], and Rhoades [4].

2. Preliminaries

Before proving our main theorems, we will introduce some definitions and lemmas. Throughout this paper, let \mathbb{R} be the set of real numbers and let \mathbb{R}^+ be the set of all nonnegative real numbers and let \mathbb{N} be the set of all positive integer.

DEFINITION 2.1. Let X be any set. A D-metric for X is a function $D: X \times X \times X \longrightarrow \mathbb{R}$ such that

- (i) $D(x, y, z) \ge 0$ for all $x, y, z \in X$, and equality holds if and only if x = y = z,
- (ii) $D(x,y,z) = D(p\{x,y,z\})$, where p denotes a permutation function of $\{x,y,z\}$,

Received May 11, 2000. Revised July 20, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 47H10.

Key words and phrases: D-metric space, fixed point.

(iii) $D(x, y, z) \leq D(x, y, a) + D(x, a, z) + D(a, y, z)$ for all $x, y, z, a \in X$. If a function D is D-metric for X, then the ordered pair (X, D) is called a D-metric space or the set X together with D-metric is called a D-metric space.

DEFINITION 2.2. A sequence $\{x_n\}$ of points of a D-metric space X converge to a point $x \in X$ if for an arbitrary $\varepsilon > 0$, there exists a positive integer n_0 such that for all $n, m \ge n_0, D(x_m, x_n, x) < \varepsilon$.

DEFINITION 2.3. A sequence $\{x_n\}$ of points of a D-metric space X is a Cauchy sequence if for an arbitrary $\varepsilon > 0$, there exists a positive integer n_0 such that for all $p, n, m \ge n_0, D(x_m, x_n, x_p) < \varepsilon$.

DEFINITION 2.4. D-metric space X is complete if Cauchy sequence $\{x_n\}$ in X converge in X.

DEFINITION 2.5. A set $S \subset X$ is said to be bounded if there exists a constant k > 0 such that $D(x, y, z) \leq k$ for all $x, y, z \in S$ and the constant k is called a D-bound of S.

DEFINITION 2.6. Let $x_0 \in X$ and $\varepsilon > 0$ be given. Then we define the open ball $B(x_0, \varepsilon)$ in X centered at x_0 of radius of ε by

$$B(x_0,\varepsilon) = \{ y \in X \mid D(x_0,y,y) < \varepsilon \text{ if } y = x_0 \text{ and}$$

$$\sup_{z \in X} D(x_0,y,z) < \varepsilon \text{ if } y \neq x_0 \}.$$

Then the collection of all open balls $\{B(x,\varepsilon):x\in X\}$ define the topology on X denoted by τ . Throughout this paper we assume that the D-metric space X is equipped with the topology τ .

DEFINITION 2.7. Let T be a mapping of a metric space M into itself. For $A \subset M$, let $\delta(A) = \sup\{d(x,y) : x,y \in A\}$ and for each $x \in M$, let

$$o(x,n) = \{x, Tx, \cdots, T^n x\}, \quad n = 1, 2, \cdots,$$

 $o(x, \infty) = \{x, Tx, \cdots\}.$

DEFINITION 2.8. A space M is said to be T-orbitally complete if and only if every Cauchy sequence which is contained in $o(x, \infty)$ for some $x \in M$ converges in M.

Using the definition of a D-metric for X and topology τ on X, we have the following Lemma.

LEMMA 2.9. The D-metric D is a continuous function on $X \times X \times X$ in the topology τ on X.

Let Φ denote the class of all functions $\phi: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ satisfying

- (i) ϕ is continuous,
- (ii) ϕ is nondecreasing,
- (iii) $\phi(t) < t$ for t > 0,
- (iv) $\sum_{n=1}^{\infty} \phi^n(t) < \infty$ for each $t \in \mathbb{R}^+$, and
- (iv) $g(t) = \frac{t}{t \phi(t)}$ is decreasing on $[0, \infty)$. In this paper, if T satisfies (3.1), then T is said to be a generalized contractive mapping on D-metric space, and if T satisfies (2.5), then T is said to be a generalized contractive mapping on metric space.

LEMMA 2.10. Let X be a D-metric space, $T:X\longrightarrow X$ and $\phi:\mathbb{R}^+\longrightarrow\mathbb{R}^+$ such that

$$D(Tx, Ty, Tz) \le \phi \Big(\max\{D(x, y, z), D(x, Tx, z), D(y, Ty, z), D(x, Ty, z), D(y, Tx, z)\} \Big)$$

for all $x, y, z \in X$, $\phi \in \Phi$. Then

$$(2.1) D(x_n, x_{n+p}, x_{n+p+t})$$

$$\leq \phi^j \left[\max_{\substack{n-j \leq \alpha \leq n+p+t \\ n-j+1 \leq \beta \leq n+p+t+1 \\ \gamma = n+p+t-j}} \{D(x_\alpha, x_\beta, x_\gamma)\} \right]$$

where $1 \leq j \leq n$ and $n, p, t \in \mathbb{N}$.

PROOF. Let $x_{n+1} = Tx_n$, for all $n \in \{0\} \cup \mathbb{N}$ and $x_0 \in X$ be given. We prove the inequality (2.1) by mathematical induction. It is easy to see that inequality (2.1) holds for j=1. Suppose that (2.1) holds for $j=k(k \geq 1)$, that is,

$$(2.2) D(x_n, x_{n+p}, x_{n+p+t})$$

$$\leq \phi^k \left[\max_{\substack{n-k \\ \leq \alpha \leq n+p+t \\ n-k+1 \leq \beta \leq n+p+t+1 \\ \gamma = n+p+t-k}} \{D(x_\alpha, x_\beta, x_\gamma)\} \right].$$

By induction, it remains to show that

$$(2.3) D(x_n, x_{n+p}, x_{n+p+t})$$

$$\leq \phi^{k+1} \left[\max_{\substack{n-k-1\\ \leq \alpha \leq n+p+t\\ n-k \leq \beta \leq n+p+t+1\\ \gamma = n+p+t-k-1}} \{D(x_\alpha, x_\beta, x_\gamma)\} \right].$$

Using hypothesis and (2.2),

$$(2.4)$$

$$D(x_{\alpha}, x_{\beta}, x_{\gamma}) = D(Tx_{\alpha-1}, Tx_{\beta-1}, Tx_{\gamma-1})$$

$$\leq \phi \left[\max_{\substack{\min(\alpha-1, \beta-1) \leq p \leq \max(\alpha-1, \beta-1) \\ \min(\alpha, \beta-1) \leq q \leq \max(\alpha, \beta) \\ r = \gamma-1}} \{D(x_{p}, x_{q}, x_{r})\} \right].$$

From (2.2) and (2.4), we obtain condition (2.3). Therefore Lemma 2.8 is proved.

LEMMA 2.11. Let (M,d) be a metric space, $T: M \longrightarrow M$, and let n be any positive integer and $\phi: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ such that

(2.5)
$$d(Tx, Ty) \le \phi \Big(\max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\} \Big)$$

for all $x, y \in M, \phi \in \Phi$. Then the followings hold;

- (a) For each $x \in M$ and all positive integers i and j, $i, j \in \{1, 2, \dots, n\}$ implies $d(T^i x, T^j x) \leq \phi(\delta[o(x, n)])$.
- (b) For each $x \in M$ and every positive integer n, there exists a positive integer $k \le n$ such that $d(x, T^k x) = \delta[o(x, n)]$.

PROOF. Let $x \in M$, let n be any positive integer and let i, j and T satisfy conditions of Lemma 2.11.

Then T^ix , T^jx , $T^{i-1}x$, $T^{j-1}x \in o(x,n)$, where $T^0x = x$. We have

$$\begin{split} d(T^ix,T^jx) & \leq \phi \Big(\max\{d(T^{i-1}x,T^{j-1}x),d(T^{i-1}x,T^ix),d(T^{j-1}x,T^jx\Big),\\ & \qquad \qquad d(T^{i-1}x,T^jx),d(T^{j-1}x,T^ix)\})\\ & \leq \phi(\delta[o(x,n)])\\ & < \delta[o(x,n)], \end{split}$$

which proves Lemma (a) and (b).

LEMMA 2.12. If T satisfies condition (2.5) in Lemma 2.11. Then

$$\delta[o(x,\infty)] \leq g(\delta[o(x,1)])d(x,Tx)$$

for all $x \in M$.

PROOF. Let $x \in M$ be arbitrary. Since $\delta[o(x,1)] \leq \delta[o(x,2)] \leq \cdots$, we know that $\delta[o(x,\infty)] = \sup\{\delta[o(x,n)] : n \in \mathbb{N}\}$. The lemma will follow if we show that $\delta[o(x,n)] \leq g(\delta[o(x,1)])d(x,Tx)$ for all $n \in \mathbb{N}$ and $x \in M$. Let n be any positive integer. From (b) of Lemma 2.11, there exists $T^k x \in o(x,n)$ $(1 \leq k \leq n)$ such that $d(x,Tx) = \delta[o(x,n)]$. We get

$$\begin{split} \delta[o(x,n)] &= d(x,T^k x) \\ &\leq d(x,Tx) + d(Tx,T^k x) \\ &\leq d(x,Tx) + \phi(\delta[o(x,n)]). \end{split}$$

Therefore, $\delta[o(x,n)] \leq g(\delta[o(x,n)])d(x,Tx) \leq g(\delta[o(x,1)])d(x,Tx)$. Since n is arbitrary, the proof is completed.

3. Main result

Theorem 3.1. Let X be a complete bounded D-metric space, T a selfmap of X satisfying

(3.1)

$$D(Tx, Ty, Tz) \le \phi \Big(\max\{D(x, y, z), D(x, Tx, z), D(y, Ty, z), D(x, Ty, z), D(y, Tx, z)\} \Big)$$

for all $x, y, z \in X, \phi \in \Phi$. Then T has a unique fixed point u in X, and T is continuous at u.

PROOF. Let $x_0 \in X$ and define $x_{n+1} = T_{x_n}$. If $x_{n+1} = x_n$ for some n, then T has fixed point. Assume that $x_{n+1} \neq x_n$ for each n. In (3.1), setting $x = x_{n-1}, y = x_n, z = x_{n+p-1}$, we have

$$D(x_n, x_{n+1}, x_{n+p}) \le \phi \Big(\max \Big\{ D(x_{n-1}, x_n, x_{n+p-1}), \\ D(x_n, x_{n+1}, x_{n+p-1}), \\ D(x_{n-1}, x_{n+1}, x_{n+p-1}), \\ D(x_n, x_n, x_{n+p-1}) \Big\} \Big).$$

By Lemma 2.8, we obtain

$$D(x_n, x_{n+1}, x_{n+p}) \le \phi^n \left[\max_{\substack{0 \le a \le n \\ 1 \le b \le n+1 \\ c = p}} D(x_a, x_b, x_c) \right].$$

Let $k = \sup_{x,y,z \in X} D(x,y,z)$. Then we obtain that

(3.2)
$$D(x_n, x_{n+1}, x_{n+p}) \le \phi^n(k).$$

Using Definition 2.1-(iii) and (3.2),

$$D(x_n, x_{n+p}, x_{n+p+t}) - D(x_{n+1}, x_{n+p}, x_{n+p+t})$$

$$\leq D(x_n, x_{n+1}, x_{n+p}) - D(x_n, x_{n+1}, x_{n+p+t})$$

$$\leq 2\phi^n(k).$$

For $p \geq 2$, $n \leq j \leq n + p - 2$, we have

$$D(x_{j}, x_{n+p}, x_{n+p+t}) - D(x_{j+1}, x_{n+p}, x_{n+p+t}) \le \phi^{j}(k),$$

$$\sum_{j=n}^{n+p-2} \{D(x_{j}, x_{n+p}, x_{n+p+t}) - D(x_{j+1}, x_{n+p}, x_{n+p+t})\} \le \sum_{j=n}^{n+p-2} \phi^{j}(k),$$

$$D(x_{n}, x_{n+p}, x_{n+p+t}) - D(x_{n+1}, x_{n+p}, x_{n+p+t}) \le 2 \sum_{j=n}^{n+p-2} \phi^{j}(k)$$

and

$$D(x_n, x_{n+p}, x_{n+p+t}) \le 2 \sum_{j=n}^{n+p-2} \phi^j(k) + \phi^{n+p-1}(k)$$

 \longrightarrow 0 as $n \longrightarrow \infty$. Therefore $\{x_n\}$ is *D*-Cauchy. Since X is complete, $\{x_n\}$ converges. Call the limit u in X. From (3.1),

$$D(x_n, x_{n+1}, Tu) \le \phi(\max\{D(x_{n-1}, x_n, u), D(x_n, x_{n+1}, u), D(x_{n-1}, x_{n+1}, u), D(x_n, x_n, u)\}).$$

Taking the limit as $n \longrightarrow \infty$ and using the Lemma 2.10 yield $D(u, u, Tu) \leq 0$, which implies that u = Tu.

To prove uniqueness, assume that $w \neq u$ is also fixed point of T. From (3.1),

(3.3)
$$D(u, w, u) = D(Tu, Tw, Tu)$$

$$\leq \phi(\max\{D(u, w, u), D(u, Tu, u), D(w, Tw, u), D(w, Tw, u), D(w, Tu, u)\})$$

$$= \phi(\max\{D(u, w, u), D(w, w, u)\})$$

$$= \phi[D(w, w, u)].$$

But

(3.4)
$$D(w, w, u) = D(w, u, w) = D(Tw, Tu, Tw)$$

$$\leq \phi(\max\{D(w, w, u), D(u, u, w)\}).$$

Combining (3.3) and (3.4) yields $D(u, w, u) \leq \phi^2 D(u, w, u)$, a contradiction. Therefore w = u. To show that T is continuous at u, let $\{y_n\} \subseteq X$ with $\lim_{n \to \infty} y_n = u$. Then substituting in (3.1) with x = z = u, $y = y_n$, we obtain

(3.5)

$$D(Tu, Ty_n, Tu) \le \phi(\max\{D(u, y_n, u), D(u, Tu, u), D(y_n, Ty_n, u), D(u, Ty_n, u), D(y_n, Tu, u)\}.$$

Taking the \limsup of (3.4), we obtain

$$\limsup \ D(Tu, Ty_n, u) \le \phi(\max\{0, 0, \limsup D(u, Ty_n, u), 0\}),$$

which implies that $\lim Ty_n = u = Tu$, and T is continuous at u.

COROLLARY 3.2. Let X be a complete bounded D-metric space, m a positive integer, T a selfmap of X satisfying

$$D(T^m x, T^m y, T^m z) \le \phi \Big(\max\{D(x, y, z), D(x, T^m x, z), D(y, T^m y, z), D(x, T^m y, z), D(y, T^m x, z)\} \Big)$$

for all $x, y, z \in X$, $\phi \in \Phi$. Then T has a unique fixed point u in X and T^m is continuous at u.

PROOF. From Theorem 3.1, T^m has a unique fixed point u and T^m is continuous at u. But $Tu = T(T^m u) = T^m(Tu)$, and Tu is also a fixed point of T^m . Since the fixed point of T^m is unique, u = Tu.

COROLLARY 3.3 [4]. Let X be a complete bounded D-metric space, T a selfmap of X satisfying

$$D(Tx, Ty, Tz) \le q \Big(\max\{D(x, y, z), D(x, Tx, z), D(y, Ty, z), D(x, Ty, z), D(y, Tx, z)\} \Big)$$

for all $x, y, z \in X$, $0 \le q < 1$. Then T has a unique fixed point u in X, and T is continuous at u.

PROOF. Let $\phi(x) = qx$, $0 \le q < 1$, $\phi \in \Phi$. Then the hypotheses in Theorem 3.1 are satisfied. Therefore Corollary 3.3 follows from Theorem 3.1.

COROLLARY 3.4 [2]. Let X be a complete bounded D-metric space, T a selfmap of X satisfying

$$D(Tx, Ty, Tz) \le q[D(x, y, z)]$$

for all $x, y, z \in X$, $0 \le q < 1$. Then T has a unique fixed point u in X, and T is continuous at u.

PROOF. The hypothesis in Corollary 3.3 is satisfied, from which the assertion follows. $\hfill\Box$

COROLLARY 3.5. Let X be a complete bounded D-metric space, T a selfmap of X satisfying

$$[D(Tx, Ty, Tz)]^{2} \leq q \cdot \max\{[D(x, y, z)]^{2}, D(x, Ty, z)D(y, Tx, z), D(x, Tx, z), D(y, Ty, z)\}$$

for all $x, y, z \in X$, $0 \le q < 1$. Then T has a unique fixed point u in X, and T is continuous at u.

PROOF. Since for any $a \ge 0$, $b \ge 0$, we have $ab \le \max\{a^2, b^2\}$ and so condition of Corollary 3.5 implies Theorem 3.1 with $\phi(x) = \sqrt{q} x$. \square

COROLLARY 3.6. Let X be a complete bounded D-metric space, T a selfmap of X satisfying

$$egin{aligned} [D(Tx,Ty,Tz)]^3 & \leq q \cdot \max\{[D(x,y,z)]^3, D(x,Tx,z), D(y,Ty,z), \ & D(x,Ty,z), D(y,Ty,z), \ & D(x,Ty,z), D(y,Tx,z)\} \end{aligned}$$

for all $x, y, z \in X$, $0 \le q < 1$. Then T has a unique fixed point u in X, and T is continuous at u.

PROOF. Since for any $a \ge 0$, $b \ge 0$, $c \ge 0$, we have $abc \le \max\{a^3, b^3, c^3\}$, and so condition of Corollary 3.6 implies Theorem 3.1 with $\phi(x) = \sqrt[3]{q} x$.

THEOREM 3.7. Let (M,d) be a metric space and M be T-orbitally complete, and let $T: M \longrightarrow M$ be a mapping satisfying (2.5), for all $x, y \in M, \phi \in \Phi$. Then

- (a) T has a unique fixed point u in M,
- (b) $\lim_{n \to \infty} T^n x = u$, and
- (c) $d(T^n x, u) \leq \phi^n(g(\delta[o(x, 1)])d(x, Tx))$ for every $x \in M$.

PROOF. Let x be an arbitrary point of M. We shall show that the sequence of $\{T^nx\}$ is a Cauchy sequence. Let n, m (n < m) be any positive integers. Since T satisfies (2.5), it follows from (a) of Lemma 2.11 that

(3.6)
$$d(T^{n}x, T^{m}x) = d(TT^{n-1}x, TT^{m-n+1}x)$$
$$\leq \phi(\delta[o(T^{n-1}x, m-n+1)]).$$

According to the Lemma 2.11-(b), there exists an integer k_1 , $1 \le k_1 \le m - n + 1$, such that

$$\delta[o(T^{n-1}x, m-n+1)] = d(T^{n-1}x, T^{k_1}T^{n-1}x).$$

Again, by Lemma 2.11, we have

(3.7)
$$d(T^{n-1}x, T^{k_1}T^{n-1}x) = d(TT^{n-2}x, T^{k_1+1}T^{n-2}x)$$

$$\leq \phi(\delta[o(T^{n-2}x, k_1 + 1)])$$

$$\leq \phi(\delta[o(T^{n-2}x, m - n + 2)]).$$

By (3.6) and (3.7), we have

$$d(T^n x, T^m x) \le \phi^2(\delta[o(T^{n-2} x, m - n + 2)]).$$

By inductive method, we obtain

$$d(T^{n}x, T^{m}x) \leq \phi(\delta[o(T^{n-1}x, m-n+1)])$$

$$\leq \phi^{2}(\delta[o(T^{n-2}x, m-n+2)])$$

$$\vdots$$

$$\leq \phi^{n}(\delta[o(x, m)]).$$

Then it follows from Lemma 2.12 that

$$(3.8) d(T^n x, T^m x) \le \phi^n(g(\delta[o(x,1)])d(x,Tx)).$$

Since $\sum_{n=1}^{\infty} \phi^n(t) < \infty$ for each $t \in R^+$, we have $\lim_{n \to \infty} \phi^n(t) = 0$. Therefore, $\{T^n x\}$ is a Cauchy sequence. Again, M being T-orbitally complete, $\{T^n x\}$ has a limit u in M. To prove that Tu = u, let us consider the following inequalities.

$$\begin{aligned} d(u,Tu) &\leq d(u,T^{n+1}x) + d(T^{n+1}x,Tu) \\ &\leq d(u,T^{n+1}x) + \phi(\max\{d(T^nx,u),d(T^nx,T^{n+1}x),\\ &\qquad \qquad d(u,Tu),d(T^nx,Tu),d(u,T^{n+1}x)\}). \end{aligned}$$

Since $\lim_{n \to \infty} T^n x = u$, this shows that d(u, Tu) = 0, i.e., u is a fixed point under T. We shall prove uniqueness. Let $w \neq u$ be also a fixed point of T.

$$d(u,w) = d(Tu,Tw) \le \phi\big(\max\{d(u,w),d(u,Tu),d(w,Tw),\\ d(u,Tw),d(w,Tu)\}\big)$$

$$\le \phi(d(u,w))$$

$$< d(u,w).$$

This is a contradiction. Therefore w = u. So we have proved (a) and (b), as x is arbitrary. Letting m tend to infinity in (3.8), we obtain the inequality (c). This completes the proof of Theorem.

COROLLARY 3.8. Let (X, d) be a complete metric space, m a positive integer, T a selfmap of X satisfying

$$d(T^{m}x, T^{m}y) \le \phi(\max\{d(x, y), d(x, T^{m}x), d(y, T^{m}y), d(x, T^{m}y), d(y, T^{m}x)\})$$

for all $x, y \in X$, $\phi \in \Phi$. Then T has a unique fixed point u in X.

PROOF. From Theorem 3.7, T^m has a unique fixed point u. But $Tu = T(T^m u) = T^m(Tu)$, and Tu is also a fixed point of T^m . Since the fixed point of T^m is unique, u = Tu.

COROLLARY 3.9 [1]. Let (X,d) be a complete metric space, T a selfmap of X satisfying

$$d(Tx,Ty) \le q \cdot \max\{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\}$$

for all $x, y \in X$, $0 \le q < 1$. Then T has a unique fixed point u in X.

PROOF. Let $\phi(x) = qx$, $0 \le q < 1$. Then $\phi \in \Phi$. By Theorem 3.7, the result follows.

COROLLARY 3.10. Let (X,d) be a complete metric space, m a positive integer, T a selfmap of X satisfying

$$d(T^m x, T^m y) \le q \cdot \max\{d(x, y), d(x, T^m x), d(y, T^m y), d(x, T^m y), d(y, T^m x)\}$$

for all $x, y \in X$, $0 \le q < 1$. Then T has a unique fixed point u in X.

PROOF. Let $\phi(x) = qx$, $0 \le q < 1$. Then $\phi \in \Phi$. By Corollary 3.8, the result follows.

COROLLARY 3.11. Let (X, d) be a complete metric space, T a selfmap of X satisfying

$$d(Tx,Ty) \le \phi[d(x,y)]$$

for all $x, y \in X$, $\phi \in \Phi$. Then T has a unique fixed point u in X.

PROOF. Since the conditions in Theorem 3.7 are satisfied, the result follows.

COROLLARY 3.12. Let (X, d) be a complete metric space, T a selfmap of X satisfying

$$d(Tx, Ty) \le q \cdot d(x, y)$$

for all $x, y \in X$, $0 \le q < 1$. Then T has a unique fixed point u in X.

PROOF. Let $\phi(x) = qx$, $0 \le q < 1$. Then $\phi \in \Phi$. Thus by Corollary 3.11 and Theorem 3.7, the result follows.

COROLLARY 3.13. Let (X, d) be a complete metric space, T a selfmap of X satisfying

$$d(Tx, Ty) \le \phi(\max\{d(x, Tx), d(y, Ty)\})$$

for all $x, y \in X$, $\phi \in \Phi$. Then T has a unique fixed point u in X.

PROOF. By Theorem 3.7, the result follows.

COROLLARY 3.14 [3]. Let (X, d) be a complete metric space, and let T be a mapping from X into itself. Suppose T is a Kannan mapping, i.e. there exists $q \in [0, \frac{1}{2})$ such that

$$d(Tx, Ty) \le q \cdot [d(x, Tx) + d(y, Ty)]$$

for all $x, y \in X$. Then T has a unique fixed point u in X.

PROOF. Let $\phi(x) = 2qx$, $0 \le q < \frac{1}{2}$. Then $\phi \in \Phi$. Thus by Corollary 3.13, the result follows.

ACKNOWLEDGEMENT. The authors wish to thank the referee for his careful reading and helpful comments on the manuscript.

References

- [1] L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), no. 2, 267-273.
- [2] B. C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Cal. Math. Soc. 84 (1992), 329-336.
- [3] R. Kannan, Some results on fixed points-II, Amer. Math. Monthly 76 (1969), 405-408.
- [4] B. E. Rhoades, A fixed point theorem for generalized metric spaces, Internet. J. Math. Sci. 19 (1996), no. 3, 457-460.

Department of Applied Mathematics Changwon National University Changwon 641-773, Korea E-mail: jsume@sarim.changwon.ac.kr