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FIXED POINT THEOREMS FOR
GENERALIZED CONTRACTIVE MAPPINGS ON
GENERALIZED BOUNDED METRIC SPACES

HaN Goo JUNG AND JEONG SHEOK UME

ABSTRACT. In this paper, we shall prove a fixed point theorem which
is more general than that of Ciri¢, Kannan and Rhoades.

1. Introduction

Dhage [2] introduced a new structure of a generalized metric space,
that is, D-metric space and obtained fixed point theorems on this space.
Dhage [2] and Rhoades [4] have extended some fixed point theorems
satisfying certain contractive conditions on the D-metric space. In this
paper, we shall prove a fixed point theorem which is more general than
the results of Cirié [1], Kannan [3], and Rhoades [4].

2. Preliminaries

Before proving our main theorems, we will introduce some definitions
and lemmas. Throughout this paper, let R be the set of real numbers
and let RT be the set of all nonnegative real numbers and let N be the
set of all positive integer.

DEFINITION 2.1. Let X be any set. A D-metric for X is a function
DX xX x X — R such that
(i) D(z,y,z) > 0 for all z,y,z € X, and equality holds if and only if
- y ey Z-,
(ii) D(z,y,z) = D(p{z,y, z}), where p denotes a permutation function
of {z, y, 2},
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(iil) D(z,y,2) < D(z,y,a) + D(z,a,2) + D(a,y,2) for all 7,y,2,a € X.
If a function D is D-metric for X, then the ordered pair (X, D) is called a
D-metric space or the set X together with D-metric is called a D-metric
space.

DEFINITION 2.2. A sequence {z,} of points of a D-metric space X
converge to a point z € X if for an arbitrary £ > 0, there exists a positive
integer np such that for all n,m > ng, D(Zm, Tn, T) < €.

DEFINITION 2.3. A sequence {z,} of points of a D-metric space X
is a Cauchy sequence if for an arbitrary ¢ > 0, there exists a positive
integer no such that for all p,n,m > ng, D(Zm, Tn, Zp) <E.

DEFINITION 2.4. D-metric space X is complete if Cauchy sequence
{zn} in X converge in X.

DEFINITION 2.5. A set S € X is said to be bounded if there exists
a constant k£ > 0 such that D(z,y,2) < k for all z,y,2 € S and the
constant k is called a D-bound of §.

DEFINITION 2.6. Let 2o € X and £ > 0 be given. Then we define the
open ball B(xp,¢) in X centered at zq of radius of £ by

B(zo,€) = {y € X |D(z0,y,y) <c if y = 2o and

sup D(xo,y,2) < € if y # o}-
zeX

Then the collection of all open balls { B{(z,¢) :-x € X} define the topology
on X denoted by 7. Throughout this paper we assume that the D-metric
space X is equipped with the topology 7.

DEFINITION 2.7. Let T be a mapping of a metric space M into itself.
For AC M , let 6(A) = sup{d(z,y) : z,y € A} and for each z € M, let

o(z,n) = {«,Tx,--- , T 2z}, n=12,---,
o{z,00) = {z, Tz, - }.
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DEFINITION 2.8. A space M is said to be T-orbitally complete if and
only if every Cauchy sequence which is contained in o(z, cc) for some
x € M converges in M.

Using the definition of a D-metric for X and topology 7 on X, we
have the following Lemma.

LemMMA 2.9. The D-metric D is a continuous function on X x X x X
in the topology 7 on X.

Let ® denote the class of all functions ¢ : R — R™ satisfying
(i) ¢ is continuous,

(ii) ¢ is nondecreasing,

(iii) qb(t) <tfor t>0,

(iv) E @™ (t) < oo for each t € R™, and

(iv) g(t) = ¢( o) is decreasing on [0, 00). In this paper, if T satisfies

(3.1), then T is said to be a generalized contractive mapping on
D-metric space, and if T satisfies (2.5}, then T is said to be a
generalized contractive mapping on metric space.

LEMMA 2.10. Let X be a D-metric space, T : X — X and ¢ :
Rt — R such that

D(Tx,Ty, Tz) < ¢(max{D(z,y,2), D(z, Tz, z), D{y, Ty, z),
D(.’E, Ty: 2), D(y: T:‘E: Z)})
forallz,y,z€ X, ¢ € ®. Then

(2'1) D($n1$n+p:mn+p+t)

< ¢ max {D{(za, 25, T4)}
n—j<a<ntptt
n—j+1<f<n+p+i+1
y=nt+p+i—j

wherel < j < n and n,p,t € N.
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ProoOF. Let zp41 = Tx,, for all n € {0} UN and 29 € X be given.
We prove the inequality (2.1} by mathematical induction. It is easy to
see that inequality (2.1) holds for j=1. Suppose that (2.1) holds for
j = k{k > 1), that is,

(2.2) D (T, Trtp) Tntptt)

K
< ¢ [ max {D(za, =g, mq«)}]-
Sa£;+p+t
n—k-+1<8<n+p+t+l
y=n+pti—k

By induction, it remains to show that

(2:3) D(Zr, Trtps Tntpit)
< gt [ max {D(za, =a, x’y)}]-
<ointpt

n—k<BL<n+p+i+l
y=n+p+t—k—1

Using hypothesis and (2.2),

(2.4)
D(zo,18,24) = D(T2oq_1,Txg-1,TT1—1)

< ¢ [ max {D(xp, zq, :cr)}]
min{a—1,8-1)<p<max{a—1,8-1)
min(ea,3—1)<g<max{a,5)
r=7y—1

From (2.2) and (2.4), we obtain condition (2.3). Therefore Lemma 2.8
is proved. [l

LEMMA 2.11. Let (M,d) be a metric space, T : M — M, and let n
be any positive integer and ¢ : Rt — R™ such that

(25)  d(Tz,Ty) < ¢( wax{d(z,y), d(= Tz),d(y, Ty),

d(z,Ty), d(y, T2)})
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for all x,y € M, ¢ € ®. Then the followings hold;

(a) For each z € M and all positive integers i and j, ¢,j € {1,2,--- ,n}
implies d(T'z, T9z) < ¢(8[o(z, n)]).

(b) For each x € M and every positive integer n, there exists a positive
integer k < n such that d(z, T*z) = é[o(z,n)].

Proor. Let z € M, let n be any positive integer and let 2, j and T
satisfy conditions of Lemma 2.11.
Then Tiz,Tiz, Ti 'z, T9 1z € o(z,n), where Tz = z. We have
d(Tiz, Tiz) < ¢(max{d(Ti—la;,Ti-1m),d(T*'-lx,Tim),d(Tf*lx,Tim),
d(TH e, Tz), d(T 1e, T"z)})
< ¢(8lolz, n)])
< 8oz, n)i,

which proves Lemma (a) and (b). O

LEMMA 2.12. If T satisfies condition (2.5) in Lemma 2.11. Then
dlo(x, 00)] < g(d]o(x,1)])d{z, Tx)
foralz e M.

PROOF. Let & € M be arbitrary. Since &[o(z,1)] < §lo(z,2)] < ---,
we know that 8[o(z,00)} = sup{é[o{z,n)] : n € N}. The lemma will
follow if we show that &[o(z,n)] < g(8lo(z, 1)])d(z, T'z) for all n € N and
z € M. Let n be any positive integer. From (b) of Lemma 2.11, there
exists 7%z € o(x,n) (1 < k < n) such that d(z, Tz) = §{o(z,n)]. We get

Slo(z,m)] = d(z, T*z)
< d(z,Tx) + d(Tz,T*z)
< d(z,Tz) + ¢(8[o(z,n)]).

Therefore, §[o(z,n)] < g{8[o(z, n)))d(z, T'z) < g(dlo{z,1)])d(z, Tz). Since
n is arbitrary, the proof is completed. O
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3. Main result

THEOREM 3.1. Let X be a complete bounded D-metric space, T a
selfmap of X satisfying

(3.1)
D(T,Ty,T2) < ¢ max{D(z,y, 2), D(z, T2, 2), D3, T3, 2),
D(z,Ty,2), D{y, Tz, 2)})
forall z,y,z € X,¢ € ®. Then T has a unique fixed point u in X, and

T is continuous at u.

PrOOF. Let o € X and define x4 = T . If £,,01 = x, for some
n, then T has fixed point. Assume that =,y # z, for each n. In (3.1),
setting ¢ = Tn-1,Y = ZTn,Z = Tnyp—1, We have

D(wn: LTn+1; In—I—p) < ¢(ma-x {D(mn—h Tz -T'n—i-p—l)a
D(mna Tr41, mn-’;—;c:»—l)a

D(Zn1,Tnt1, Tntp-1),
D(mn,xn,mn+p—1)})-

By Lemma 2.8, we obtain

D(zn, Tnt1, Tnip) < ¢° [ max D(:ca,xb,:cc)}- 0
0<a<n
1<b<n+1
c=p
Let k= sup Df(z,y,z). Then we obtain that
{E,y,ZEX
(3.2) D(zp, Tni1, Tngp) < ¢™(K).

Using Definition 2.1-(iii) and (3.2),

D(:En, Inip, -'L'n+p+t) - D(In+11 Lntps $n+p+t)
S D(mnw Tp+1, mn-}-p) - D(mn: Tn+1, xn+p+t)
< 2¢™(k).
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Forp>2 n<j<n+p—2, wehave

D(Z4, Trtps Tnprt) — D@41, Tnps Trtpre) < &7 (K),

n+p—2 nbp2 |
Z: {D(:I:j, Tn+p, l‘n+:0+t) - D(:l?j+1, Tntp, xn+p+t)} < Z W(k)’
Jj=n =
n+p—2
D(Zn, Tnsps Tntptt) — D{@nt1, Tnap: Tnipre) <2 Y (k)
j=n
and
ntp—2
D(mn’Eﬂ+P’$n+p+t) <2 Z (;’)J(k) + ¢"+P—1(k)
j=n

— 0 as n — oc. Therefore {z,} is D-Cauchy. Since X is complete,
{z,} converges. Call the limit » in X.
From (3.1),
D(xn, Tnt1, Tu) < p(max{D(Tn_1,ZTn,u), D(zp, Zny1,u),
D(mn—l 1y Tn41, ’LL), D(Ina Tn, 'u')})
Taking the limit as n — oo and using the Lemma 2.10 yield
D(u,u,Tu) <0, which implies that u = Tu.
To prove uniqueness, assume that w # u is also fixed point of T'.
From (3.1},
(3.3) D{u,w,u) = D(Tu, Tw, Tu)
S ¢(maX{D(u? w’ u)! D(ui Tu? u)!
D(w, Tw,u), D{(u, Tw, u),

D(w, Tu,u)})
= ¢(max{D(u, w,u), D(w, w, u}})
= ¢[D(w, w, u)].
But
(3.4) D{w,w,w) = D{w,u,w) = D(Tw,Tu, Tw)

< ¢(max{D(w, w, ’U,), D(u, U, w)})
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Combining (3.3) and (3.4) yields D(u,w,u) < ¢2D(u,w,u), a contradic-
tion. Therefore w = u. To show that T is continuous at u, let {y,} C X
with lim ¥, = u. Then substituting in (3.1) with z = 2 = u, ¥ = yn,

Ti—r 00
we obtain

(3.5)
D(Tu, Ty, Tu} < ¢(max{D(u, yn, u), D(u, Tu, ),

D(yn, Ty'rla ’U..), D(U, Tyfn "U,),
D(yn, Tu,u)}.

Taking the limsup of (3.4), we obtain
limsup D(Tu,Tyn,u) < ¢p(max{0,0, limsup D(u, Tyn, u),0}),

which implies that lim Ty, = v = T'u, and T is continuous at wu.

COROLLARY 3.2. Let X be a complete bounded D-metric space, m.
a positive integer, T a selfmap of X satisfying

D(z,T™y, z), D(y, Tz, z)})

for all z,y,z € X, ¢ € ®. Then T has a unique fixed point » in X and
T™ is continuous at u.

PRrROOF. From Theorem 3.1, T™ has a unique fixed point v and T™
is continuous at u. But Tu = T(T™u) = T™(Tu), and Tu is also a fixed
point of T"*. Since the fixed point of 7™ is unique, u = Tu. d

COROLLARY 3.3 [4]. Let X be a complete bounded D-metric space,
T a selfmap of X satisfying
D(Tz, Ty, T2) < g max{D(z,y.2), Dla, Tz, 2), Dy, Ty, 2),
D(s,Ty, ), D(y, Tz, 2)})

for all z,y,z € X, 0< g < 1. Then T has a unique fixed point u in X,
and T is continuous at u.
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PROOF. Let ¢{z) = gz, 0 < g < 1, ¢ € ®. Then the hypotheses in
Theorem 3.1 are satisfied. Therefore Corollary 3.3 follows from Theorem
3.1. O

CoROLLARY 3.4 [2]. Let X be a complete bounded D-metric space,
T a selfmap of X satisfying

D(Tz,Ty,Tz) < q|D(z,y, 2)]
forall z,y,z € X, 0 < g < 1. Then T has a unique fixed point u in X,

and T is continuous at u.

ProOOF. The hypothesis in Corollary 3.3 is satisfied, from which the
assertion follows. O

COROLLARY 3.5. Let X be a complete bounded D-metric space, T a
selfmap of X satisfying

[D(Tz, Ty, T2))* < q-max{[D(z,y, 2)]?, D(z, Ty, 2) D(y, Tz, 2),
D(zx, Tz, 2), D{y, Ty, z)}
forall z,y,z € X, 0< g < 1. Then T has a unique fixed point v in X,

and T is continuous at u.

PROOF. Since for any a > 0, b > 0, we have ab < max{a?,4*} and
so condition of Corollary 3.5 implies Theorem 3.1 with ¢(z) = /g 2. [

COROLLARY 3.6. Let X be a complete bounded D-metric space, T a
selfmap of X satisfying
[D(Te, Ty, Tz2))* < g - max{[D(z,y, 2)|>, D(x, Tz, z), Dy, Ty, ),
D(CIJ, Tya Z): D('ya Ty: Z),
Dz, Ty, z), D(y, Tz, 2)}

forallz,y,z € X, 0 < g < 1. ThenT has a unique fixed point v in X,
and T is continuous at u.
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PROOF. Sinceforanya >0, b > 0,c > 0, we have abc < max{a®, %, %},
and so condition of Corollary 3.6 implies Theorem 3.1 with ¢(z) =

Yqz. O

THEOREM 3.7. Let (M,d) be a metric space and M be T-orbitally
complete, and let T : M — M be a mapping satisfying (2.5), for all
z,y € M, € ®. Then
{a) T has a unique fixed point u in M,

(b) hm T"z = u, and

(c) d(T"m u) < ¢"(g(8[o(z, 1)])d(z, T'x)) for every z € M.

PRrROOF. Let z be an arbitrary point of M. We shall show that the
sequence of {T"z} is a Cauchy sequence. Let n,m(n < m) be any
positive integers. Since T satisfies (2.5), it follows from (a) of Lemma

2.11 that

(3.6) d(T"z, T™z) =d(TT" 'z, TT™ " '1)
Sq.’)(é[o(T“*la:, m —n + 1)]).

According to the Lemma 2.11-(b), there exists an integer k1, 1 < k& <
m —n + 1, such that

Slo(T™ tz,m —~n 4 1)) = d(T™ 12, TR T 12),
Again, by Lemma 2.11, we have

(3.7) d(T™ Yo, TM T Y z) = d(TT™ 2, TF 1T 2g)
< $(O1o(T™ *z, k1 +1)])
< ¢(8[o(T™ 2z, m —n + 2)]).

By (3.6) and (3.7), we have

d(T"z, T™z) < ¢*(8jo(T™ 2z, m — n + 2)]).
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By inductive method, we obtain

d(T™z, T™z) < ¢(8[o(T" z,m —n + 1)])
< @*(Olo(T™ e, m —n +2)))

< ¢"(d[o(z, m})).
Then it follows from Lemma 2.12 that

(3.8) d(T"z, T™x) < ¢"(9(6{o(z, 1)])d(z, Tz)).

Since 5. ¢"(¢) < oo for each t € Rt, we have lim ¢"(t) = 0. There-
n=1 n—oo
fore, {T"z} is a Cauchy sequence. Again, M being T-orbitally com-
plete, {T"z} has a limit » in M. To prove that T'u = u, let us consider
the following inequalities.
d{u, Tu) < d(u, T"z) + d(T™ x, Tu)
< d(u, T" ) + ¢(max{d(T"z,w), d(T"z, T" 'z,
d{u, Tw), d(T™z, Tu), d(u, T"1z)}).

Since lim 7™z = wu, this shows that d(u,Tu) = 0, ie., u is a fixed
n-—0
point under T. We shall prove uniqueness. Let w 7# u be also a fixed
point of T'.
. d(u,w) = d(Tu, Tw) < ¢(max{d(u, w),d(u, Tu), d(w, Tw),
d(u, Tw), d(w, Tu)})

< ¢(d(u, w))

< d{u, w).
This is a contradiction. Therefore w = u. So we have proved (a) and

(b), as z is arbitrary. Letting m tend to infinity in (3.8), we obtain the
inequality (c). This completes the proof of Theorem. 0l
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CoOROLLARY 3.8. Let (X,d) be a complete metric space, m a positive
integer, T' a selfmap of X satisfying

d(T™x, T™y) < p{max{d(z,y), d(z, T"x),d(y, T"y),
d(z, T™y),d(y, T"x)})

forallz,y € X, ¢ € ®. Then T has a unique fixed point u in X.

PROOF. From Theorem 3.7, 7™ has a unique fixed point u. But
Tu=T(T™u) = T™(Tu), and Tu is also a fixed point of T™. Since the
fixed point of T™ is unique, v = Tu. CI

CoRrOLLARY 3.9 [1]. Let (X,d) be a complete metric space, T a
selfmap of X satisfying

d(Tz, Ty) < ¢ - max{d(z,y), d(z,Tz), d(y, Ty), d(z, Ty), d(y, 'z}
forallz,ye€ X,0< q < 1. Then T has a unique fixed point u in X.

ProoF. Let ¢(z) = gz, 0 < g < 1. Then ¢ € ®. By Theorem 3.7,
the result follows. O

COROLLARY 3.10. Let (X,d) be a complete metric space, m a posi-
tive integer, T a selfmap of X satisfying

d(T™z, T™y) < ¢ max{d{z,y),d(z, T™z),d(y, T™y),
d{z, T™y),d(y, T z)}

forall z,y € X,0< g < 1. Then T has a unique fixed point v in X.

PrROOF. Let ¢(z) = gz, 0 < g < 1. Then ¢ € ®. By Corollary 3.8,
the result follows. O
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COROLLARY 3.11. Let (X, d) be a complete metric space, T a selfmap
of X satisfying

d(Tz, Ty) < $ld(z, y)]
forall z,y € X, ¢ € ®. Then T has a unique fixed point u in X.

PROOF. Since the conditions in Theorem 3.7 are satisfied, the result
follows. O

COROLLARY 3.12. Let (X, d) be a complete metric space, T a selfmap
of X satisfying

d(TIaTy) <q: d($:y)
forall z,y € X,0<q < 1. Then T has a unique fixed point v in X.

PROOF. Let ¢(z) = gz, 0 < g < 1. Then ¢ € ®. Thus by Corollary
3.11 and Thecrem 3.7, the result follows. O

COROLLARY 3.13. Let (X, d) be a complete metric space, T a selfmap
of X satisfying

d(Tz,Ty) < ¢{max{d{z,Tx),d(y, Ty)})
forall z,y € X, ¢ € ®. Then T has a unique fixed point v in X.

Proor. By Theorem 3.7, the result follows. O

COROLLARY 3.14 [3]. Let (X, d) be a complete metric space, and let
T be a mapping from X into itself. Suppose T is a Kannan mapping,
i.e. there exists q € (0, %) such that

d(Tz,Ty) < q- [d{z, Tz} + d(y, Ty)]

for all z,y € X. Then T has a unique fixed point v in X.
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PROOF. Let ¢(z) = 2gz, 0 < ¢ < % Then ¢ € ®. Thus by Corollary
3.13, the result follows. (]
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