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LINEAR FUNCTIONALS ON O,
ASSOCIATED TO UNIT VECTORS

Eul-CHAI JEONG, JUNG-RYE LEE, AND DONG-YUN SHIN®

ABSTRACT. We study the vectors related to states on the Cuntz
algebra ©, and prove that, for two states w and p on On with
wlumE, = plonr,, i (@(s1), -+ ,w(sn)) and (p(s1), < ,plsn)) are
unit vectors, then they are linearly dependent. We also study the
linear functional on ¢, associated to a sequence of unit vectors in
C™ which is the generalization of the Cuntz state. We show that if
the lnear functional associated to a sequence of unit vectors with a
certain condition is a state, then it is just the Cuntz state.

1. Introduction

In 1977, Cuntz [3] introduced the C*-algebra generated by n = 2,3, - -
isometries s1, 52, - - , 5 satisfying the Cuntz relations of

n
5785 = 0;;1 and E sisf=1

i=1

and denoted it by @,,. It is called the Cuniz algebra and the isomorphic
type of this simple C*-algebra does not depend on the choice of isome-
tries but on the number of isometries. A UHF,, algebra is a uniformly
hyperfinite algebra with Glimm type n*(see [4]) and we understand
UHF,, as a subalgebra of ©,,. We note that since the Cuntz algebra O,
is the universal C*-algebra generated by isometries 51,2, -+ , S, Satis-
fying the Cuntz relations, it is the closure of the linear span of operators
of the form s;, 8;, - - - 55, 85,85,_, -85, fork,1 =0,1,--- anda subalgebra
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UHF,, of On is the closure of the linear span of operators of the form

One of the study of the Cuntz algebra @, is about it’s representations
(see [1], [2], [6]). In fact, there is a correspondence between representa-
tions of O, and endomorphisms of B(#) of Powers index n up to unitary
action, where B(H) is the set of all bounded linear operators on a Hilbert
space H.

Thus, to study representations of the Cuntz algebra @, is one of main
concerns. However, the simple C*-algebra O, is the famous example
whose representations are bad. There are many cases that the represen-
tations of O, have infinitely many irreducible subrepresentations. But,
even in finite cases, finding subrepresentations takes a lot of work(see
[5]). On the other hand, since states on ©,, give representations of O,
by GNS constructions, it is natural that our attention is to study states
on O,.

For a state p on O,, we first concern the vector {(p(s1), p(s2),--, p
(sn)) € C" related to p which may not be a unit vector. But when
it is a unit vector, we show that p satisfies p(s;s}) = p(s;)p(s;) for

= 1,2,---,n. We study the relation between states on @, and
vectors related to states. We prove that for two states w and p on O,, with
the same restriction w|ynr, = plunr,, if two vectors (w(sy), - ,w(s,))
and {p(s1), -, p(sn)) related to w and p, respectively, are unit vectors,
then they are linearly dependent.

Product pure states on UHF,, can be described by sequences of unit
vectors in C” and the natural extensions of these states to ,, become
linear functionals on O,. Since a state on a C*-algebra is a positive
linear functional of norm one, it is natural that our concern is the linear
functionals which come from sequences of unit vectors in C*. For further
study, we define the linear functional on O,, associated to a sequence of
unit vectors in C™.

DEFINITION 1.1. For a sequence {7 }m of unit vectors n,, = (n.,,- -,
ny) € C*, the associated linear functional w on O, is defined by

W(8iy - 80y 3, 57,) = 1ttt

In particular, for a constant sequence {n},, of a unit vector n =
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1

(', -+ ,n™) in C", the associated linear functional w, on O, is

P L T NS S R
wn(si, 34k 55, Sjl)—n nEnt . omht.

We report here on the Cuntz state. In [2], Bratelli, Jorgensen, and
Price defined a state wy, on O, for a unit vector n = (n*,5%,--- ,7™)
in C™ by wy(ss, -~ 8:,85,---8%,) = ni - pikpdc - pit and called it the
Cuntz state which is the pure state on Oy,. In fact, the Cuntz state wy, is
the linear functional on ©,, associated to a constant sequence of a fixed
unit vector 7 in C*. Indeed, the Cuntz state w;,, is an example of a state
on O, which is the natural extension of a state wylynr, on UHF,.

However, we give an example to show that such natural extensions
turn out not to be states but linear functionals except a specific type.
Thus the problem of whether there exist non-constant sequences such
that the associated linear functionals are states is left open. We investi-
gate the conditions for the associated linear functionals to be states. In
this paper, we naturally generalize the Cuntz state to the linear func-
tional on O, associated to a sequence of unit vectors in C*. And we
prove that if the linear functional associated to a simple sequence of
unit vectors such as a sequence of scalar multiples of a fixed unit vector,
is a state, then the sequence should be a constant sequence.

2. Vectors related to states on O,

In this section, we examine the vectors related to states on a simple
infinite C*-algebra O,,.

We first recall that Mg((©,) denotes the set of all k x k matrices
(ai;), ai; € O, and for any A = (a;;) in Mi(O,), the adjoint A* =
(bij) of A is given by b;; = aj; € On. In particular, for a vector §{ =
(€1,£2,-..  £™) in C™, we consider the adjoint £* of £ as a column vector
whose i-th component is -57 On the other hand, the inner product <
£,n > of two vectors £ and 5 in C" is given by < £,n >= £n*.

Now let p be a state on O,. We also recall that, for ¥k = 1,2,---,
a map pr : Mp(On) — My is given by pi({ai;)) = (p(asy)) for any
(aij) € Mi(Oy), where My is an k x k matrix algebra over C. Here
we consider the vector {p(s1),p(s2), - ,p(sr)) in C™ related to p. It
turns out that even when p is pure, the vector {p(s1), p(s2), -+, p(8n))
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may not be a unit vector. But it is easy to check that for a unit vector
n € C™ and the Cuntz state wy, the vector related to wy, is just n and w,
satisfies wy(s:8}) = wy(si)wn(s;) for i,j = 1,2,-- ,n. In addition, we
know that wy, can not be a homomorphism, but wy(s;5;) = wy(si)wy(s;)
and wp(s?) = wy(s;) hold. We notice here that the vector n related to w,
is a unit vector. Thus when the vector (p(s1), p(s2), -+ ,p(sn)) related
to a state p is a unit vector, one would naturally expect that p satisfies
some property similar to a homomorphism.

In the following lemma, we obtain the result that the vector related
to a state on (O, is in the unit ball of C™*. In addition, when it is a unit
vector, we investigate the property of p.

LEMMA 2.1. Let p be astate on O,,. Then we have y ;. |p(s:)|? < 1.
In particular, if 3.7, |p(s:)|* = 1, then we have p(s;s}) = p(s:)p(s;) for
any t,j =1,2,-- ,n.

PrROOF. For a state p on O,, consider the positive matrix (p(s;)
M) Since p is positive linear functional, it is completely positive
and {p(s;s})) is also positive. For simplicity, we denote (p(s:)p(s;)) and
(p(sis])) by S and T, respectively.

At first, we show that § < T. To do this, consider the matrix A =
(aij) € Mn(Oy) given by ay; = s} for j = 1,2,--- ,n and a;; = 0 for
i=2,3,---,nand 7=1,2,.- ,n. Since

I A ' I A I A N ry.
(O O) (O O): (A* A*A) €M2n(0n) is a positive ma-

trix, where I and O are identity matrix and zero matrix in M,{Oy),
. I A _ I pr{A) .
respectively, and pa2, (A* A*A) = (pn(A)* pn(A* 4) € My, is
also a positive matrix.
Now let £ and 1 be any two unit vectors in C™. We set £p,(A)n* = re
for some real numbers r and 8. Then for any real number ¢, we have

_i0 I pn(A) t€i0§*>
(b8 ) (pn(A)* pn(A*A)) ( 7"
=12 4+ 2rt + npn(A* A)n* > 0.

6

Thus we obtain the inequality 7% < 1 p,(A*A) n* and so | £ po(A) n* |2 <
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7 pn (A*A) n* which is equivalent to | < £pn(A), n > 12 < < npn(A*A),
n>.

When np, (4)* # 0, if we replace ¢ by a unit vector H:;ﬁ%)-)*ﬂ in the
last inequality, then we get the inequality

< Npn(A)* non(A)" > < < npa(A*4),n > .

When np,(A)* = 0, the above inequality is also true.

Therefore, the equality < npn{A)*,non(A)* >=< npa(A*)pn(4),n >
gives that < np,(A)*pn(A),n > < < npn(A*A),n > for any unit vector
n in C" which implies that p,(A)*pn(A4) < pr(A*A). Thus we conclude
that § = (p(si)p(s;)) < (p(s:is})) =T

On the other hand, § < T gives trS < trT which implies that

Z lp(s:)|? < ZP(SiSf) = P(Z sist) = p(1) = 1.
i=1 =1 =1

Moreover, if 3 |p(s;)|? = 1, then we have trS = trT and so tr(T —
S) = 0. Note that for a positive matrix C = (¢;;) over C, if trC = > ¢y
is zero, then C should be zero matrix. Since 7' — S is a positive matrix,

we conclude that T = § and so p(s;8}) = o(s:)o(s;), i, =1,2,---,n.0

We remark that the equality p(sis}) = p(si)p(s;) in Lemma 2.1,
is equivalent to p(s;s7) = p(s:)p(s}), but it does not imply p(s;s;) =
pls:)pls;).

We also need the following lemma to prove our theorem.

LEMMA 2.2, For two unit vectors £ and n in C™, we have that £*£ =
n*n if and only if n = A€ for some A € C, |A| = 1.

PrOOF. Let £ and 7 be two unit vectors in C™.

If n = A{ for some A € C, |A| = 1, then it is straightforward compu-
tations that £*£ = n*n holds.

Conversely, suppose that £ and 7 satisfy £*¢ = n*n. If we let p be
a projection £*&, then it is easily verified that p is‘a projection of rank
1 and £ and 5 are the eigenvectors corresponding to eigenvalue 1 of p.
Since the set of all eigenvectors of the projection of rank 1 is a vector
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space of one dimension, £ and 7 are linearly dependent vectors. Hence
the proof is completed. O

Now we are ready to prove the following theorem which gives the
concrete description of the relation of vectors related to states on Op
whose restrictions to UHF,, are equal.

THEOREM 2.3. Let w and p be two states on On with w|ynr, =
plung, . If two vectors (w(s1), -+ ,w(sn)) and (p(s1),- -, p(sn)) related
tow and p, respectively, are unit vectors, then there exists A € C, |A| =1
such that (w(s1), -+ ,w(sa)) = Ap(s1), -~ » p(8n))-

PROOF. For two states w and p on O, with w|urr, = p|unF,, since
for i,7 = 1,2,---,n, s;5; is an element in UHF,, we have w(s;s}) =

p(sis *)

For convenience, we let £ and 1 be two vectors (w(s1), -+ ,w(sn))
and (p(s1),-- ,p(sa)), respectively. If £ and 7 are unit vectors, then
by Lemma 2.1, the equality w(s;s}) = p(sis]) follows w(si)w(s;) =
p(si)p(s_,) which is equivalent to 5*5 n*n.

Therefore, Lemma 2.2 gives that (w(s1), -+ , w(sn)) = A (p(s1): -++,
p (sn)) for some A € C, |A| = 1. O

3. The associated linear functionals on O,

For a fixed unit vector 5 in C?, the associated linear functional w;, on
O,, is a state which is called the Cuntz state. We have already generalized
it to the linear functional on ©,, associated to a sequence of unit vectors
in C™. It seems, however, that the associated linear functional on Oy, is
not a state. So one would expect that if the associated linear functional
is a state, then the sequence should be a constant sequence.

In the following example, we first give a linear functional w on Oz
associated to a simple sequence of unit vectors in C? and show that w is
not a state.

ExaMPLE 3.1. Consider a sequence {(1,0),(—1,0),(1,0),(1,0),---}
of unit vectors in C? and the associated linear functional w on Oz. For
an element z = (1 + 51 + s2)s} in Oy, the fact of

Tz = 3s18t + 2(s¥s + s1812) + $38 + 5187
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gives that

w(z*z)=3-1-1+2(1--1-14+1-1.-1)+1-—-1-1-1+41-1--1-1
:—-3,

which implies that w is not positive. Hence it is not a state.

From Example 3.1, we know that there exist sequences of unit vectors
and the associated linear functionals which may not be states. Thus, it
is interesting to check when the associated linear functional is a state on
O,,. Here, we investigate conditions on vectors in C” for the case when
the associated linear functionals on ¢,, become states.

For our purpose, we consider the canonical endomorphism # of O,

defined by #(z) = Es;xs[ (see [2]). As is known, ¥|ynr, is an one-

sided shift and we ha.ve Y{zY(y) = ¢Y(zy) for any z,y € O,. Now for
k=0,1,---, let ¥* be an endomorphism on ©,, defined by qbo (z) ==
and wk(:c) = w(wkfl(a:)) for all z € O,,. Then p(y*} is also a state on Oy,
and we can consider the vector (p(¢*(s1)), p(¥*(s2)), -+, p(¥*(sn))) €
C" related to a state p(z,bk). In the following theorem, we obtain some
results on these vectors.

THEOREM 3.2. Let p be a state on O, such that |p(¥*(s:))| =
for some k € {0,1,---} and i € {1,2,--- ,n}, where ¢ is the canon-
ical endomorphism of O,,. Then for any m = k,k + 1, -+, we have
p(¥™(8:)) = p(¥*(s:)) and p(y™(s;)) =0 forany j = 1,2,---,n, j#1i.

PrROOF. We note that for the canonical endomorphism 1 and ¢ €

{1,2,--- ,n}, the definition of ¢ gives s}¥(s;) = s] Zszsi s) = s;87 and

¥(s7)s; = s;5;. Let p be a state on O, with [p(qpk(s,))| = 1 for some
ke{0,1,---}and i1 € {1,2,... ,n}.

As is well known, we have |p($)]2 < p{z*z) for all z € O, and so
when p(z*z) = 0, p(z) = 0 holds. Thus we have

(" (5:)" )7 < P (s )™ (5i)") = p(¥™ (s:)9"(s7)) = p(¥* (sis7)} < 1,

which implies p(¥*(s;s7)) = 1 by the fact of [p(v*{s;))| = 1.
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Now for k = 0,1,2, - - -, we consider an element y = 1*(s;) — ¢***(s;)
in @,,. Then we immediately see that

yty = vF(stss) — PR (sF(si)) — 9F((s])si) + ¥R (s]s0)
=2 — 2" (s:8]).

From the equality p(¥*(s;s?)) = 1 it follows that p{y*y) = 0 and so
p(y) = 0. Hence we obtain p(¢*¥1(s;)} = p(¢*(s:)). By iterating this
process, we obtain p(y™(s;)) = p(¢*(s;)) for any m =k, k+1,---.

To complete the proof, we have to show that p(¥™(s;)) = 0 for all
4, j#i. But from Lemma 2.1, we know Y ;- [p(™(s1))|* < 1. Thus
the fact of [p(¥y™(s;))| = 1 gives that p(¢y™(s;)) =0 for all j, j# i [

From Theorem 3.2, if a state p on O,, satisfies |p(¥?(s1)}} = 1, e.g.,

(p(2(51)), p(#*(52))s - -+ s (7 (80))) = (p(37(51)), 0, -, 0),

then it follows directly that for any m = 2,3,---,
(p(™(s1)), p(¥™(s2)), - -+ » (™ (50))) = (P(¥*(51)), 0, -, 0).

As is mentioned, the linear functional associated to a constant se-
quence of a unit vector is a state. Our concern is the converse of it;
when the linear functional associated to a sequence of vectors is a state,
this sequence is constant. The following theorem is a result about our
concern which says that when the linear functional associated to a cer-
tain sequence of unit vectors is a state, the sequence must be a constant
one which implies that the linear functional becomes the Cuntz state.

THEOREM 3.3. Let {n }m be a sequence of unit vectors in C" and
w the associated linear functional on ©,. If | < fm,Wm+1 > | = 1 for
anym=1,2,--- and w is a state, then {n,,}= is a constant sequence.
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ProoF. First we consider that form=1,2,---,

Z@/}"“l(sz‘) =Y (s )W (s:) — ™ ()

= {U™ (sis]) — ™ @ (sa)sy) — W™ (sap(sT)) + 9™ (sis]))

i=1

—9_ Tpm—l(Z(d)(si)s;“ + s:10(87)))

=1
n
=2 - 2™ Y Z 818,87 8T}
id=1

Suppose that {nm}x is a sequence of unit vectors 0, = (7}, 72,

<o+, M) With | < %, m1 > | = 1 and let w be the associated linear
functional on O,. Then since for m = 1,2,--- and i = 1,2,--- ,n, we
immediately see that w(y™'(s;)) = n%,, we get

w[’t,bm*l( i s;sisz‘sz)] = Xn: w[@bm_l(slsisfs:)]
ii=1

il=1

i)
= Y a1 Wy 1 = | < T s > 2= 1.
il=1
If w is a state, then from above equalities and w(1) = 1, we obtain that

W[ ST (o) ~ W™ (51 = $7(s1))]

i=1
= w[Q —2m (Y slsisfs;‘)} =ow(l)—2-1=0.
1,i=1
Thus we have that for any i = 1,2, -+ ,n, w(®™ 1(s;)) = w(®@™(s;)

which implies %, = 1%, ., and 50 ), = Mmr1. This completes the proof.(]

In the following, we apply Theorem 3.3 to the sequence of the scalar
multiples of a fixed unit vector which contains Example 3.1.
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COROLLARY 3.4. For a unit vector n € C", let {1, }m be a2 sequence

of vectors Ny, = Amn with Ay, € C, |Ap| = 1. If the associated linear
functional w on O, is a state, then A, =1 form =1,2,--.

PROOF. Since | < fim, i1 > |2 = Am P AmarP] < mn > 2 =1,

the proof is completed by Theorem 3.3. U
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