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A SIMPLE CONSTRUCTION FOR THE SPARSE
MATRICES WITH ORTHOGONAL ROWS

GI1-SANG CHEON AND GWANG-YEON LEE

ABSTRACT. We obtain a simple construction for the sparse n x n
connected orthogonal matrices which have a row of p nonzero entries
with 2 < p < n. Moreover, we study the analogous sparsity problem
for an n x n connected row-orthogonal matrices.

1. Imtroduction

Many contexts in computational linear algebra and numerical op-
timization require the computation of the sparse orthogonal (or row-
orthogonal) matrices under various restrictions which arise in the num-
ber of nonzero entries of a row or column. This is to find orthogonal
(or row-orthogonal) matrices with the least nonzero entries under given
restrictions.

For positive integers m and n with m < n, an m x n matrix A is
disconnected if the rows.and columns of A can be permuted to obtain a

matrix of the form
Ay, O
O Ay’

Here, either of the matrices Aj; or Az may be vacuous by virtue of
having no rows or no columns. But neither A;; nor Az is allowed to
be the 0 x 0 matrix. A matrix which is not disconnected is connected.
If Ais an n x n orthogonal matrix, then it is easy to show that if A
contains a zero submatrix whose dimensions sum to n then the submatrix
complementary to it is also a zero submatrix. Hence an n X n orthogonal
matrix A is connected if and only if A does not contain a p x ¢ zero
submatrix with p + ¢ = n up to row and column permutations.
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In (1j (also see [8]), it is shown that each n x n connected orthogonal
matrix has at least 4n — 4 nonzero entries, and that for n > 2 there
exist such orthogonal matrices with exactly 4n — 4 nonzero entries. This
result is extended in [2] to connected m x n row-orthogonal matrices
whose rows are pairwise orthogonal. Recently, a construction method
for the n x n connected orthogonal matrices with exactly 4n — 4 nonzero
entries is obtained in [3]. And in [4, it is shown that an n x n orthogonal
matrix with a full row (or column) has at least

(1.1) ([logan| + 3)n — 2lloganl+1

nonzero entries where a vector is called full if each of its entries is nonzero.
The n x n orthogonal matrices with a full row (or column) which achieve
the sparseness in (1.1) are closely related to the discrete Haar wavelet
{see [4]). We call such matrix by the Haar wavelet matriz. This result
is extended in [5] to m X n row-orthogonal matrices. That is, if A is an
m X n connected row-orthogonal matrix with a full row then A has at
least

(1.2) f(m,n):= ([logz:%ﬁJ +3) n—(n—m-+1)2l iz 7=rr I+1

nonzero entries. In [7], a construction method of the n x n Haar wavelet
matrices is given. Moreover, recently in [5], it is shown that an n x n
connected orthogonal matrix with a row (or column) of p nonzero entries
such that 2 < p < n has at least

(1.3) g(n, p) == (|logap] + 3)p — 21°E=PI*1 1 4(n — p)
nonzero entries, which extends the works in {1, 4].

In this paper, we obtain a simple construction for the n x n connected
orthogonal matrices which have a row (or column) of p nonzero entries,
2 < p € n, and have exactly g(n, p) nonzero entries. Moreover, we study
the sparsity problem for an m x n connected row-orthogonal matrix with
a row of p nonzero entries, which generalizes (1.2) and (1.3).
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2. A simple construction for the sparse orthogonal matrices

We begin this section by describing a few results from {3, 7] which
we will need. The following theorem is an immediate consequence of
Theorem 2.1 in [1] and Theorem 2.4 in [3].

THEOREM 2.1. If A is an n x n connected orthogonal matrix with

exactly 4n — 4 nonzero entries, then there exist permutation matrices P
and @ such that for n = 2k
(2.1)

PAQ = (R(Ql) S R(6:2)®- - R(Bk)) (Il ORO)G---®RO,_,)® Il)
and, forn =2k +1
PAQ= (R @@ R@)® L) (Lo RE) - ROL)),

where for 8 = 6 or 6},

I =, R(G)::[ cos f Sint?]

cos B sin 8
—sin @ cosf ’

sin —cos @

T s
——<lf< = 0).
(-2 <0<, 040

For each integer n > 2, we define the class B, to be the family of all
n x n connected orthogonal matrices which have exactly 4n — 4 nonzero
entries and the class H, to be the family of all n x n Haar wavelet
matrices.

REMARK 2.2. From [1] and [7], it is easy to see that for each n > 2, a
matrix in B,, has a column with exactly two nonzero entries and a matrix
in H,, has a row with exactly two nonzero entries up to transpose.

Let N 7
X _ | ¥
X_[XT]E?{T and Y—[Y}E'HS,

where x?, y7 are full, and r + s = n. Theorem 2.2 of {7] asserts that if

QUOgZW'J_l S T, 8 S QUOanJ'
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then
X
=Ly
(2.2) A=| V2 \{Af € Mo
T T
VE V2

LEmMMA 2.3. Let
L3
U:[yT] and V =[x V']

be a p x p orthogonal matrix and a g X g orthogonal matrix respectively.
Then

(2.3) A= [xg} 8,]

isa(p+q—1) x (p+ q— 1) orthogonal matrix.

Proof. Since U is orthogonal, vty + yyl = I, and since V is
orthogonal, x"x =1, V'Tx = 0, vy = I,—1. Thus

AT A vt wT U 0] _[UTU +yxTxyT TV
o Vv |t Vv V' TxyT vy
— Ip o _
- O Iq—l = dpt+g-1»

showing that A is a (p+¢— 1) x (p+ ¢ — 1) orthogonal matrix. O

Now, we are ready to give a construction method of the sparse orthog-
onal matrices which have a row of p nonzero entries such that 2 < p < n.
Throughout this paper, the number of nonzero entries in A is denoted

by #(A).
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4
THEOREM 2.4. For an integer p with2 < p < mn, if U = [;{T] isa

matrix in H, where #(y7) =2, andV =[x V'] is a matrix in B, p41
where #(x) = 2, then A is an n X n connected orthogonal matrix in (2.3)
with exactly g(n,p) nonzero entries.

Proof. By Lemma 2.3 and the connectivity of U and V', clearly A is
an n x n connected orthogonal matrix. Furthermore,

#(A) = #U) + #(V") + #(xyT)
= [([logap] + 3)p — 215711 — 9] + [4(n — p) — 2] +4
= (|logop| + 3)p — gllogzp|+1 4 4(n — p}
= g(n,p). O

For example, let

vz 2 1 L1
4 4 2 2 2
I 2 g 0 0
U=| 1 1 ¥2 9 0
_¥Z _vZ 1 1 1
4 4 2 2 2
2 2
L0 0 0 ¥ -
and ) _
ooz 2 0 0
S F E 0 0 o
3
B KA
6 6
0 F 1 o
VB V2 V2
0 0 0 X 2z v
L0 0 0 -—¥E 2 2
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Then
(2 2 -3 3 3 0 0o 0o 0 0]
% _'\gj 0 0 0 0 0 0 0 0
3 PR 0 0 0 0 0 0 0
—Z -2 p 5 3 0 0 0 0 0
A= ’ N 0 0
0 0 0 —@ % 3{4—6 ‘/Tg 0 0 0
0 0 0 0 0 — 42 Jg _J§ % 0
0 0 0 0 0 ¥& _¥& _1 S g
0 o o0 0 0 0 0o B L2
[ 0 0 0 0 0 0 0 _§ _2 3?

is a 10 x 10 connected orthogonal matrix with a row of 5 nonzero entries
which has f(10,5) == 37 nonzero entries. Note that U and V in the
above example are obtained from the construction method (2.2) and
(2.1) respectively.

3. The sparsity problem for row-orthogonal matrices

One can ask the analogous question for the sparsity of a connected
m x n row-orthogonal matrix which has a row with p nonzero entries
such that 2 <p < n.

We begin by describing a way to build row-orthogonal matrices from
(2] which we will need. Let
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be 2 p x g and a s x t row-orthogonal matrix with the rows al and b7,
respectively. Define AQB to be the (p+ s — 1) x (g + ) matrix

A O
AQOB = | aT bf
0 B

Certainly, AQB is a row-orthogonal matrix and AQB is connected if and
only if both A and B are connected. We can extend this construction

to use any number of row-orthogonal matrices by defining AQBOC as
(AOB)YOC.

The following Lemma follows from [2].

LEMMA 3.1. Let A be an m X n connected row-orthogonal matrix.

Then
n+2m—2 if n>2m -2,

A) >
#l )-_{4m—4 if n <2m—2.

Moreover, the equality holds if and only if up to column and row per-
mutations, if n > 2m — 2 then A = JOB{$--- 0B, 1, where J is the
1x (n—2m+2) matrix of all ones and B; € By foreachi=1,... ,m—1;
ifm <n<2m—2then A= By 0B, (- OBkn_m+1, where By, € By,
for each i = 1,2,... ,n—m+ 1 such that k1 + ko + -+ kp—pms1 =1
andky 2 ko> -2 ky i1 >2;ifn=m>2 then A € B,.

Let m, n, and p be positive integers with 2 <m < n and 2 < p < n,
and let h(m,n, p) denote the least number of nonzero entries in an m xn
connected row-orthogonal matrix which has a row with p nonzero entries.

Note that it is shown in [1] (also see [3]) that the number of nonzero
entries in each row of a connected orthogonal matrix in B, is 2, 3 or 4
up to its transpose. Thus from Lemma 3.1, it is easy to show that if
n>2m—2and p=n—2m+4, p=2or4then h(m,n,p) =n+2m-2,
andif n <2m —2and 2 <p=2,3,... ki + k2 < 8 then h(m,n,p) =
4m — 4.

Now, we consider thecase n > p>n—-m+2andn >m > 2. We
need the following lemma which follows from the proof of Lemma 2.3.
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LEMMA 3.2. If U and V in Lemma 2.3 are connected p x ¢ and
connected s x t row-orthogonal matrices, respectively, then A in (2.3) is
a connected (p+ s — 1) x (g + t — 1) row-orthogonal matrix.

The construction in Lemma 3.2 can be used to construct sparse m xn
connected row-orthogonal matrices which have a row with p nonzero

entries such that n > p>n—-—m+2.
!

Let U = )[{T be a (m —n+p) X p row-orthogonal matrix whose first

row is full, and whose the number of nonzero entries is f(m — n + p,p}
in (1.2). Then U has a row with 2 nonzero entries from [5]. We may
assume that such row of U is y7. And let V = [x V'] be a matrix in
B, _p+1 whose first column x has 2 nonzero entries. Then from Lemma
3.2, Ain (2.3) is an m X n connected, row-orthogonal matrix whose first
row has p nonzero entries. Furthermore,

#(A) = #U) +#(V') + #(xyT)

e e
+{4{n-p)—2} +4

B (P"@%@J " 3) p— (n—m+ 1)2lees=hmml41 £ 4 —p).
Thus we get the following theorem.

THEOREM 3.3. Ifn>p>n—m+2andn>m > 2 then
(2.4)

p |loge s=E7 | +1
him,n,p) < logg ————— - — 1)2lleg2m=n7
(mnp)_({oggn_.m+lJ+3)p (n—m+1)
+4(n—p).
We conjecture the inequality (2.4) is an equality for each p = n—m+

2,...,n. Note that if p = n then f(m,n) = h(m,n,p), and if m =n
then g(n,p) = h(m,n,p). Thus this is a generalization of (1.2) and (1.3).
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