A SIMPLE CONSTRUCTION FOR THE SPARSE MATRICES WITH ORTHOGONAL ROWS

GI-SANG CHEON AND GWANG-YEON LEE

ABSTRACT. We obtain a simple construction for the sparse $n \times n$ connected orthogonal matrices which have a row of p nonzero entries with $2 \le p \le n$. Moreover, we study the analogous sparsity problem for an $m \times n$ connected row-orthogonal matrices.

1. Introduction

Many contexts in computational linear algebra and numerical optimization require the computation of the sparse orthogonal (or row-orthogonal) matrices under various restrictions which arise in the number of nonzero entries of a row or column. This is to find orthogonal (or row-orthogonal) matrices with the least nonzero entries under given restrictions.

For positive integers m and n with $m \leq n$, an $m \times n$ matrix A is disconnected if the rows and columns of A can be permuted to obtain a matrix of the form

$$\begin{bmatrix} A_{11} & O \\ O & A_{22} \end{bmatrix}.$$

Here, either of the matrices A_{11} or A_{22} may be vacuous by virtue of having no rows or no columns. But neither A_{11} nor A_{22} is allowed to be the 0×0 matrix. A matrix which is not disconnected is connected. If A is an $n \times n$ orthogonal matrix, then it is easy to show that if A contains a zero submatrix whose dimensions sum to n then the submatrix complementary to it is also a zero submatrix. Hence an $n \times n$ orthogonal matrix A is connected if and only if A does not contain a $p \times q$ zero submatrix with p + q = n up to row and column permutations.

Received January 21, 2000. Revised August 16, 2000.

²⁰⁰⁰ Mathematics Subject Classification: Primary 05A99: Secondary 65F25.

Key words and phrases: sparse orthogonal matrix, row-orthogonal matrix, Haar wavelet matrix.

In [1] (also see [8]), it is shown that each $n \times n$ connected orthogonal matrix has at least 4n-4 nonzero entries, and that for $n \geq 2$ there exist such orthogonal matrices with exactly 4n-4 nonzero entries. This result is extended in [2] to connected $m \times n$ row-orthogonal matrices whose rows are pairwise orthogonal. Recently, a construction method for the $n \times n$ connected orthogonal matrices with exactly 4n-4 nonzero entries is obtained in [3]. And in [4], it is shown that an $n \times n$ orthogonal matrix with a full row (or column) has at least

$$(1.1) \qquad (\lfloor \log_2 n \rfloor + 3)n - 2^{\lfloor \log_2 n \rfloor + 1}$$

nonzero entries where a vector is called *full* if each of its entries is nonzero. The $n \times n$ orthogonal matrices with a full row (or column) which achieve the sparseness in (1.1) are closely related to the discrete Haar wavelet (see [4]). We call such matrix by the *Haar wavelet matrix*. This result is extended in [5] to $m \times n$ row-orthogonal matrices. That is, if A is an $m \times n$ connected row-orthogonal matrix with a full row then A has at least

$$(1.2) \ f(m,n) := \left(\left| \log_2 \frac{n}{n-m+1} \right| + 3 \right) n - (n-m+1) 2^{\left\lfloor \log_2 \frac{n}{n-m+1} \right\rfloor + 1}$$

nonzero entries. In [7], a construction method of the $n \times n$ Haar wavelet matrices is given. Moreover, recently in [5], it is shown that an $n \times n$ connected orthogonal matrix with a row (or column) of p nonzero entries such that $2 \le p \le n$ has at least

(1.3)
$$g(n,p) := (\lfloor \log_2 p \rfloor + 3)p - 2^{\lfloor \log_2 p \rfloor + 1} + 4(n-p)$$

nonzero entries, which extends the works in [1, 4].

In this paper, we obtain a simple construction for the $n \times n$ connected orthogonal matrices which have a row (or column) of p nonzero entries, $2 \le p \le n$, and have exactly g(n,p) nonzero entries. Moreover, we study the sparsity problem for an $m \times n$ connected row-orthogonal matrix with a row of p nonzero entries, which generalizes (1.2) and (1.3).

2. A simple construction for the sparse orthogonal matrices

We begin this section by describing a few results from [3, 7] which we will need. The following theorem is an immediate consequence of Theorem 2.1 in [1] and Theorem 2.4 in [3].

THEOREM 2.1. If A is an $n \times n$ connected orthogonal matrix with exactly 4n-4 nonzero entries, then there exist permutation matrices P and Q such that for n=2k (2.1)

$$PAQ = \Big(R(\theta_1) \oplus R(\theta_2) \oplus \cdots R(\theta_k)\Big)\Big(I_1 \oplus R(\theta_1') \oplus \cdots \oplus R(\theta_{k-1}') \oplus I_1\Big)$$

and, for n = 2k + 1

$$PAQ = \Big(R(\theta_1) \oplus \cdots \oplus R(\theta_k) \oplus I_1\Big) \Big(I_1 \oplus R(\theta_1') \oplus \cdots \oplus R(\theta_k')\Big),$$

where for $\theta = \theta_k$ or θ'_k ,

$$\begin{split} I_1 &= [1], \quad R(\theta) = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}, \\ (-\frac{\pi}{2} < \theta < \frac{\pi}{2}, \; \theta \neq 0). \end{split}$$

For each integer $n \geq 2$, we define the class \mathcal{B}_n to be the family of all $n \times n$ connected orthogonal matrices which have exactly 4n-4 nonzero entries and the class \mathcal{H}_n to be the family of all $n \times n$ Haar wavelet matrices.

REMARK 2.2. From [1] and [7], it is easy to see that for each $n \geq 2$, a matrix in \mathcal{B}_n has a column with exactly two nonzero entries and a matrix in \mathcal{H}_n has a row with exactly two nonzero entries up to transpose.

Let

$$X = \left[egin{array}{c} \widehat{X} \ \mathbf{x}^T \end{array}
ight] \in \mathcal{H}_r \quad ext{and} \quad Y = \left[egin{array}{c} \mathbf{y}^T \ \widehat{Y} \end{array}
ight] \in \mathcal{H}_s,$$

where \mathbf{x}^T , \mathbf{y}^T are full, and r+s=n. Theorem 2.2 of [7] asserts that if $2^{\lfloor \log_2 n \rfloor -1} < r, \ s < 2^{\lfloor \log_2 n \rfloor}.$

590

then

(2.2)
$$A = \begin{bmatrix} \hat{X} & O \\ \frac{\mathbf{x}^T}{\sqrt{2}} & \frac{\mathbf{y}^T}{\sqrt{2}} \\ O & \hat{Y} \\ \frac{-\mathbf{x}^T}{\sqrt{2}} & \frac{\mathbf{y}^T}{\sqrt{2}} \end{bmatrix} \in \mathcal{H}_n.$$

LEMMA 2.3. Let

$$U = \begin{bmatrix} U' \\ \mathbf{y}^T \end{bmatrix}$$
 and $V = [\mathbf{x} \ V']$

be a $p \times p$ orthogonal matrix and a $q \times q$ orthogonal matrix respectively. Then

(2.3)
$$A = \begin{bmatrix} U' & O \\ \mathbf{x}\mathbf{y}^T & V' \end{bmatrix}$$

is a $(p+q-1) \times (p+q-1)$ orthogonal matrix.

Proof. Since U is orthogonal, ${U'}^T U' + yy^T = I_p$, and since V is orthogonal, $x^T x = 1$, ${V'}^T x = 0$, ${V'}^T V' = I_{q-1}$. Thus

$$\begin{split} A^T A &= \begin{bmatrix} {U'}^T & \mathbf{y} \mathbf{x}^T \\ O & {V'}^T \end{bmatrix} \begin{bmatrix} {U'} & O \\ \mathbf{x} \mathbf{y}^T & {V'} \end{bmatrix} = \begin{bmatrix} {U'}^T U' + \mathbf{y} \mathbf{x}^T \mathbf{x} \mathbf{y}^T & \mathbf{y} \mathbf{x}^T V' \\ {V'}^T \mathbf{x} \mathbf{y}^T & {V'}^T V' \end{bmatrix} \\ &= \begin{bmatrix} I_p & O \\ O & I_{q-1} \end{bmatrix} = I_{p+q-1}, \end{split}$$

showing that A is a $(p+q-1) \times (p+q-1)$ orthogonal matrix.

Now, we are ready to give a construction method of the sparse orthogonal matrices which have a row of p nonzero entries such that $2 \le p \le n$. Throughout this paper, the number of nonzero entries in A is denoted by #(A).

THEOREM 2.4. For an integer p with $2 \le p \le n$, if $U = \begin{bmatrix} U' \\ \mathbf{y}^T \end{bmatrix}$ is a matrix in \mathcal{H}_p where $\#(\mathbf{y}^T) = 2$, and $V = \begin{bmatrix} \mathbf{x} & V' \end{bmatrix}$ is a matrix in \mathcal{B}_{n-p+1} where $\#(\mathbf{x}) = 2$, then A is an $n \times n$ connected orthogonal matrix in (2.3) with exactly g(n,p) nonzero entries.

Proof. By Lemma 2.3 and the connectivity of U and V, clearly A is an $n \times n$ connected orthogonal matrix. Furthermore,

$$#(A) = #(U') + #(V') + #(\mathbf{x}\mathbf{y}^{T})$$

$$= [(\lfloor \log_{2} p \rfloor + 3)p - 2^{\lfloor \log_{2} p \rfloor + 1} - 2] + [4(n-p) - 2] + 4$$

$$= (\lfloor \log_{2} p \rfloor + 3)p - 2^{\lfloor \log_{2} p \rfloor + 1} + 4(n-p)$$

$$= g(n, p).$$

For example, let

$$U = \begin{bmatrix} \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \\ -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$$

and

$$V = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \\ -\frac{1}{2} & \frac{\sqrt{6}}{4} & \frac{\sqrt{6}}{4} & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{3}}{4} & \frac{3}{4} & 0 \\ 0 & \frac{\sqrt{6}}{4} & -\frac{\sqrt{6}}{4} & -\frac{1}{4} & \frac{\sqrt{3}}{4} & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{2} \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{2} \end{bmatrix}.$$

Then

$$A = \begin{bmatrix} \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{4} & -\frac{\sqrt{6}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{6}}{4} & \frac{\sqrt{6}}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{3}}{4} & \frac{3}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{4} & -\frac{\sqrt{6}}{4} & -\frac{1}{4} & \frac{\sqrt{3}}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{4} & -\frac{\sqrt{6}}{4} & -\frac{1}{4} & \frac{\sqrt{2}}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

is a 10×10 connected orthogonal matrix with a row of 5 nonzero entries which has f(10,5) = 37 nonzero entries. Note that U and V in the above example are obtained from the construction method (2.2) and (2.1) respectively.

3. The sparsity problem for row-orthogonal matrices

One can ask the analogous question for the sparsity of a connected $m \times n$ row-orthogonal matrix which has a row with p nonzero entries such that $2 \le p \le n$.

We begin by describing a way to build row-orthogonal matrices from [2] which we will need. Let

$$A = \begin{bmatrix} \widehat{A} \\ \mathbf{a}^T \end{bmatrix}$$
 and $B = \begin{bmatrix} \mathbf{b}^T \\ \widehat{B} \end{bmatrix}$

be a $p \times q$ and a $s \times t$ row-orthogonal matrix with the rows \mathbf{a}^T and \mathbf{b}^T , respectively. Define $A \lozenge B$ to be the $(p+s-1) \times (q+t)$ matrix

$$A \lozenge B = \begin{bmatrix} \widehat{A} & O \\ \mathbf{a}^T & \mathbf{b}^T \\ O & \widehat{B} \end{bmatrix}.$$

Certainly, $A \lozenge B$ is a row-orthogonal matrix and $A \lozenge B$ is connected if and only if both A and B are connected. We can extend this construction to use any number of row-orthogonal matrices by defining $A \lozenge B \lozenge C$ as $(A \lozenge B) \lozenge C$.

The following Lemma follows from [2].

LEMMA 3.1. Let A be an $m \times n$ connected row-orthogonal matrix. Then

$$\#(A) \geq \left\{egin{array}{ll} n+2m-2 & ext{if } n>2m-2, \ 4m-4 & ext{if } n\leq 2m-2. \end{array}
ight.$$

Moreover, the equality holds if and only if up to column and row permutations, if n > 2m-2 then $A = J \lozenge B_1 \lozenge \cdots \lozenge B_{m-1}$, where J is the $1 \times (n-2m+2)$ matrix of all ones and $B_i \in \mathcal{B}_2$ for each $i=1,\ldots,m-1$; if $m < n \leq 2m-2$ then $A = B_{k_1} \lozenge B_{k_2} \lozenge \cdots \lozenge B_{k_{n-m+1}}$, where $B_{k_i} \in \mathcal{B}_{k_i}$ for each $i=1,2,\ldots,n-m+1$ such that $k_1+k_2+\cdots+k_{n-m+1}=n$ and $k_1 \geq k_2 \geq \cdots \geq k_{n-m+1} \geq 2$; if $n=m \geq 2$ then $A \in \mathcal{B}_n$.

Let m, n, and p be positive integers with $2 \le m \le n$ and $2 \le p \le n$, and let h(m, n, p) denote the least number of nonzero entries in an $m \times n$ connected row-orthogonal matrix which has a row with p nonzero entries.

Note that it is shown in [1] (also see [3]) that the number of nonzero entries in each row of a connected orthogonal matrix in \mathcal{B}_n is 2, 3 or 4 up to its transpose. Thus from Lemma 3.1, it is easy to show that if n > 2m-2 and p = n-2m+4, p = 2 or 4 then h(m, n, p) = n+2m-2, and if $n \le 2m-2$ and $2 \le p = 2, 3, \ldots, k_1 + k_2 \le 8$ then h(m, n, p) = 4m-4.

Now, we consider the case $n \ge p \ge n - m + 2$ and $n \ge m \ge 2$. We need the following lemma which follows from the proof of Lemma 2.3.

LEMMA 3.2. If U and V in Lemma 2.3 are connected $p \times q$ and connected $s \times t$ row-orthogonal matrices, respectively, then A in (2.3) is a connected $(p+s-1) \times (q+t-1)$ row-orthogonal matrix.

The construction in Lemma 3.2 can be used to construct sparse $m \times n$ connected row-orthogonal matrices which have a row with p nonzero entries such that $n \ge p \ge n - m + 2$.

Let $U = \begin{bmatrix} U' \\ \mathbf{y}^T \end{bmatrix}$ be a $(m-n+p) \times p$ row-orthogonal matrix whose first row is full, and whose the number of nonzero entries is f(m-n+p,p) in (1.2). Then U has a row with 2 nonzero entries from [5]. We may assume that such row of U is \mathbf{y}^T . And let $V = [\mathbf{x} \quad V']$ be a matrix in \mathcal{B}_{n-p+1} whose first column \mathbf{x} has 2 nonzero entries. Then from Lemma 3.2, A in (2.3) is an $m \times n$ connected, row-orthogonal matrix whose first row has p nonzero entries. Furthermore,

$$#(A) = #(U') + #(V') + #(\mathbf{x}\mathbf{y}^{T})$$

$$= \left\{ \left(\left\lfloor \log_{2} \frac{p}{n-m+1} \right\rfloor + 3 \right) p - (n-m+1) 2^{\left\lfloor \log_{2} \frac{p}{n-m+1} \right\rfloor + 1} - 2 \right\}$$

$$+ \left\{ 4(n-p) - 2 \right\} + 4$$

$$= \left(\left\lfloor \log_{2} \frac{p}{n-m+1} \right\rfloor + 3 \right) p - (n-m+1) 2^{\left\lfloor \log_{2} \frac{p}{n-m+1} \right\rfloor + 1} + 4(n-p).$$

Thus we get the following theorem.

THEOREM 3.3. If $n \ge p \ge n-m+2$ and $n \ge m \ge 2$ then (2.4)

$$h(m,n,p) \le \left(\left\lfloor \log_2 \frac{p}{n-m+1} \right\rfloor + 3 \right) p - (n-m+1) 2^{\left\lfloor \log_2 \frac{p}{n-m+1} \right\rfloor + 1} + 4(n-p).$$

We conjecture the inequality (2.4) is an equality for each $p = n - m + 2, \ldots, n$. Note that if p = n then f(m, n) = h(m, n, p), and if m = n then g(n, p) = h(m, n, p). Thus this is a generalization of (1.2) and (1.3).

ACKNOWLEDGMENT. The authors would like to thank the referee for simple proof of Lemma 2.3.

References

- [1] L. B. Beasley, R. A. Brualdi, and B. L. Shader, Combinatorial Orthogonality, in Combinatorial and Graph-Theoretical Problems in Linear Algebra (R.A. Brualdi, S. Friedland and V. Klee, eds., Springer-Verlag, 1993, pp. 207-218.
- [2] G.-S. Cheon and B. L. Shader, How sparse can a matrix with orthogonal rows be?, J. of Combinatorial Theory Series A 85 (1999), 29-40.
- [3] _____, Constructions for the sparsest orthogonal matrices, Bull. of Korean Math. Soc. 39 (1999), no. 1, 119-129.
- [4] ______, Sparse orthogonal matrices and the Haar wavelet, Discrete Applied Mathematics 101 (2000), 63-76.
- [5] ______, Sparsity of orthogonal matrices with restrictions, Linear Algebra and Its Applications 306 (2000), 33-44.
- [6] G.-S. Cheon, C. R. Johnson, S.-G. Lee, and E. J. Pribble, The Possible numbers of zeros in an orthogonal matrix, Electronic J. of Linear Algebra 5 (1999), 19-23.
- [7] G.-S. Cheon, S.-W. Park, and H.-G. Seol, Constructions for sparse row-orthogonal matrices with a full row, J. of Korean Math. Soc. 36 (1999), no. 2, 333-344.
- [8] B. L. Shader, A simple proof of Fiedler's conjecture concerning orthogonal matrices, Rocky Mtn. Math. J. 27 (1997), 1239-1243.

Gi-Sang Cheon
Department of Mathematics
Daejin University
Pocheon, 487-711, Korea
E-mail: gscheon@road.daejin.ac.kr

Gwang-Yeon Lee
Department of Mathematics
Hanseo University
Seosan, 356-820, Korea
E-mail: gylee@gaya.hanseo.ac.kr