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CONJUGACY SEPARABILITY OF CERTAIN
FREE PRODUCT AMALGAMATING RETRACTS

Goansu KM

ABSTRACT. We find some conditions to derive the conjugacy sepa-
rability of the free product of conjugacy separable split extensions
amalgamated along cyclic retracts. These conditions hold for any
double coset separable groups and free-by-cyclic groups with non-
trivial center. It was known that free-by-finite, polycyclic-by-finite,
and Fuchsian groups are double coset separable. Hence free products
of those groups amalgamated along cyclic retracts are conjugacy sep-
arable.

1. Introduction

Two nonconjugate elements of a group G are called conjugacy distin-
guished (c.d.) if their images are not conjugate in some finite quotient of
(. The whole group is termed conjugacy separable (c.s.) if each pair of its
nonconjugate elements is c.d. Some known ¢.s. groups which are related
to this paper are polycyclic-by-finite groups [7], free-by-finite groups (4],
free-by-cyclic groups with nontrivial center [5], Fuchsian groups [6]. Dyer
[5] showed that the free product of two free groups —or two finitely gener-
ated (f.g.) nilpotent groups— amalgamating cyclic subgroups is ¢.s. Also,
in [11, 10, 18], the conjugacy separability of free products of ¢.s. groups
amalgamating cyclic subgroups was considered.

The purpose of this paper is to investigate the conjugacy separability
of free products of c.s. groups amalgamating along refracts. This is an
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extension of the Boler and Evans’ result [3] that the free product of resid-
ually finite (RF) groups amalgamated along retracts is RF". Their proof
was based on the fact that each split extension of a f.g. RF group by a
RF group is RE (15, p.29]. However, C. F. Miller [15, p.28] constructed
a split extension of a f.g. free group by a f.g. free group which is not
¢.s. Thus Boler and Evans’ method can not be adapted to our study. In
[1, 8], free products of 7, groups amalgamated along retracts are m.. On
the other hand free products of subgroup separable groups amalgamated
along retracts may not be subgroup separable [1]. In this paper, we find
some conditions for the free product of ¢.s. groups, amalgamated along
cyclic retracts, to be c.s. as follows:

MAIN THEOREM. Let G; = E; - H (1 € I) be c.s., split extensions of
E; by a retract H = {(h). Assume that, for each i € I, G; satisfies the
following:

D1 If there exist w;,v; € E; such that u; ¢ Hv;H then there exists
P,<1;E; such that P, < G; and u; € P,Hv;H;

D2 If there exists u; € E; such that [u;, h’] # 1 for all j # 0 then,
for any integer € > 1, there exists P,<;E; such that F; < G; and
[us, h'] € P; implies €| j.

Then the free product G of the G; (i € I) amalgamated along H = (h)
is ¢.s.

D1 and D2 hold for any double coset separable group (Lemma 3.7).
Note that free-by-finite [17], polyeyclic-by-finite [12], and Fuchsian [16]
groups are double coset separable. Hence those groups satisfy D1 and D2.
We show that free-by-cyclic groups with nontrivial center also satisfy D1
and D2. Thus free products of those groups amalgamated along cyclic
retracts are c.s.

Finally, we note that conditions D1 and D2 played an important role
in [9] to study the conjugacy separability of certain one-relator groups.

We introduce some definitions and results that we shall use in this
paper.

We write £ ~¢ y if there exists ¢ € G such that z = g~'yg and we write
z ¢ y otherwise. {2} denotes the conjugacy class {y € G : & ~g y} of
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z in G. We use (X)° to denote the normal closure of X in G. We also
use [x,y] = 2 'y ey and Cy(K) ={h € H : [h, k] =1 for all k € K}.

We denote by A =5 B the free product of A and B with their subgroup
H amalgamated. If G = Ay B and z € G then ||z|| denotes the
amalgamated free product length of z in G. On the other hand we use
|z| to denote the order of z.

N <G denotes that N is a normal subgroup of finite index in G. I
G is a homomorphic image of G then we use T to denote the image of
re€GinG.

Let H be a subgroup of G. Then we say that G is H-separable if to
each z € G\ H there exists N<1;G such that x ¢ NH. A group G is said
to be residually finite (RF) if G is (1)-separable. A group G is said to be
conjugacy separable (c.s.) if G is {z}%-separable for all z € G. Clearly
every c.s. group is RF. We shall use the following theorems:

THEOREM 1.1.((3]) The free product of RF groups amalgamated along
retracts is RE.

THEOREM 1.2.([5]) If A and B are c.s. and H is finite, then A +y B
is ¢.s.

As Dyer [5] mentioned, the main tool to prove the conjugacy separa-
bility of a free product with amalgamation is the following result, known
as Solitar’s theorem:

THEOREM 1.3.([14]) Let G = A g B and z € G be of minimal length
in its conjugacy class. Supposey € G, y is cyclically reduced, and x ~¢ y.

(1) If flz}} = O, then ||y|| € 1 and if y € A say, there is a sequence
hi,ha, ..., h, of elements in H such that y ~4 by ~g ho ~4 -+ ~p
hr =z

(2) If ||lz|| = 1, then ||y|| = 1 and either z,y € A and x ~4 y, or else
z,y€ Bandz ~py.

(3) If |z|| = 2, then ||lzl| = |ly|| and y ~u =* where z* is some cyclic
permutation of .
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2. Preliminary results

In this section, we find some basic results to study the conjugacy
separability of free products of c.s. groups amalgamated along retracts.
Throughout the paper £ = E; - H and F = F} - H are split extensions
of the normal subgroups E; and Fj by a retract H and, by Theorem 1.2,
we assume that the retract H is infinite. The following lemma was used
implicitly to study split extensions [3, 15].

LEMMA 2.1. If N<;E = E-H then there exist M, <1 E), and My<1;H
such that MiMy<;E, MiM, C N, and E/M; M, is a split extension of
the finite group FyM, /MM, by the finite group H M, /M, M,.

Using this, we can easily see the following.
LEmMA 2.2([8)) f E = E; - H is RF, then E is H-separable.

In view of [5, Lemma 5], we need the following lemma to derive the
conjugacy separability of the free product of c.s. split extensions, amal-
gamated along retracts.

LEMMA 2.3. Suppose that E = E| - H is ¢.s. and € E such that
{z}¥ N H = (. Then there exists N<;E such that {T}* N H = 0, where
E=E/N.

Proof. Let ¢ = x,h, where 2; € E, and h € H. Now E is c¢.s. and
z og h. It follows that there exists M<;E such that # o5 h, where
E = E/M. By Lemma 2.1, there is a homomorphism = : £ — E such
that E is a split extension of a finite group E; by a finite group H and
Ker # C M. Thus Z #5 h. Then we can see that {#}¥ N H = @, where
E = E/Ker . O

InE=FE,-H,ifhAykfor h k€ H, then we have h £ k. Thus we
have the following.

LEmMMA 24, If E=E,-H iscs. then H iscs.

Now we are ready to consider the conjugacy separability of the free
product of ¢.s. split extensions amalgamated along retracts.
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THEOREM 2.5. Assumethat E=FE,-Hand FF = F,-H arec.s. Letz
and y be nonconjugate elements of G = E xg F, each of minimal length
in its conjugacy class. Then x and y are c.d. unless [jz| = ||y[| > 2.

Proof. Since G is RF by Theorem 1.1, we may assume z # 1 # y.

Case 1. x| = 0 and {|yl| =1 (or, similarly, {ly} = 0 and ||z} = 1).

Without loss of generality, we may assume z € H and y € E\H. Since
E is H-separable (Lemma 2.2), there exists N1<1;F such that y ¢ NiH
Now y has the minimal length 1 in its conjugacy class in G. This implies
that {y}* N H = @. Hence, by Lemma 2.3, there exists No<1;E such that
{YENH =0, where E = E/Ny. Let N = NyN Ny and Ny = NN H.
Then N<i;E and Ny<i;H. Since H is a retract of F, there exists M <, F
such that M N H = Ny = NN H. Let 7 be the natural homomorphism
of E xy F onto E/N g F/M, where H = NH/N = MH/M. Clearly
yr ¢ Hr and {yx}f* N Hx = 0. It follows from Theorem 1.3 that ym
has the minimal length 1 in its conjugacy class in Gx. This implies that
y7 eor zw. Since Gx is ¢.s. by Theorem 1.2, 2 and y are c.d.

Case 2. ||z|l # |yl and [zl = 2 (or, similerly, (2] # |yl and [yl
>2)

Since z has the minimal length in its conjugacy class in G, z is cycli-
cally reduced, say, z = e;fies---e,f, where e; € E\H and f; € F\H.
Let y = aib; - - - wherea; € E\H and b; € F\ H (we note that y may have
any length > 0). Since E and F are H-separable (Lemma 2.2), there ex-
ist Ny<iyF and M, <;F such that e;,a; € N1H and f;,b; ¢ M H, for all
1,7. Now H is a retract of E and F, and N, N M;<;H. This follows that
there exist Ny<iyE and M2<]fF such that NoNH = N NM, = M;N H.
Let N=NNNyand M = M; N M, Thenclearly NNH =MnNH.
Thus we form a homomorphism # : E %y F — E/N s F/M, where H =
NH/N = MH/M. Moreover, we have ||zz| = |z| and ||y=|| = ||yl
Since zw is cyclically reduced and of length > 2, xwx has the minimal
length (# [ly=||) in its conjugacy class in E/N «gz F'/M. Note that yx is
cyclically reduced, since y has the minimal length in its conjugacy class
in G. It follows from Theorem 1.3 that xm #¢g, yr. Since Gx is c.s., =
and y are c.d.

Case 3. [zl = |lyll = 0.
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In this case, we have z,y € H and z 4y y. Considering the homo-
morphism 7o : E *y F' — H defined by zmy = 1 for all z € Ey U Fy, we
have zmg £y ymp. Since H is c.s. by Lemma 2.4, z and y are c.d.

Case 4. |zl =yl =1

Subcase 1. Both z and y are in E\H (or, similarly, both z and y
are in F\H). Since E is c.s. and H-separable, there exists Ny<(/E
such that z,y ¢ N\H and Nz g Niy. Now z has the minimal
length 1 in its conjugacy class in G. This implies that {z}* N H = 0.
By Lemma 2.3, there exists Np<i;E such that {#}¥ N H = 0, where
E = E/N;. Let N = NN Ny<i;E. Since H is a retract of F' and
NN H<gH, there exists M < F such that M N H = NN H. Hence we
have a homomorphism 7 : E g FF — E/N %y F/M such that {lz7| =
1= |lyx|| and {zn}f" N Hr =0, where H = HN/N = HM/M. Thus,
it follows from Theorem 1.3 that zw has the minimal length 1 in its
conjugacy class in Gw. Since Ker # C Ny and Nyzx ogyn, N1y, we have
T gy ym. Hence, by Theorem 1.3 again, we have om ¢, yw. Since Gm
is ¢.5., x and y are c.d.

Subcase 2. z € E\H and y € F\H (or, similarly, ¢ € F\H and
y € E\H). As in Subcase 1, we can find N<;FE and M <;F such that
t ¢ NH,yd MH, NNH=MnH, and {z7}¥" N Hr = 0. Then, as
before, we have zm g, ym, hence 2 and y are c.d. This completes the
proof. Then NNH = N3NM; = MNH. Thus, we have a homomorphism
7: E+y F — E/N s5 F/M such that ||z7|| = §yx| =1 and {zr}F"n
Hr = 0. It follows, as before, that z and y are c.d. This completes the
proof. O

The following lemma gives a necessary condition to derive the conju-
gacy separability of free products with amalgamation.

LEMMA 2.6. Suppose (G contains two elements x,y and a subgroup H
such that x ¢ HyH. If there is no N<;G such that © € NHyH, then
Q=G =5 G is not ¢.s.

Proof. If G is not RF | then clearly @} is not RF, hence not c.s. Thus
we may assume that G is RF. If G is not H-separable, then ) is not
RF [5, p.42]. Hence @ is not c¢.s. Thus we may assume that G is RF
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and H-separable. Then, it foliows from our assumption that z & H and
y & H. Write @ = G *y G, the free product of G and G; amalgamat-
ing subgroups H and Hv, where ¢ : G — G is an isomorphism under
which ¢; = g¥. Thus z; = ¢y & Hy and 1 = yv € He. It follows
that ||zz7!|| = |lyyrl|| = 2. Since z & HyH, we have zx; ' oLg yyi'.
This implies by Theorem 1.3 that zz7! % yy;'. We shall prove that
the images of zz]' and yy[' are conjugate under any homomorphisms
of @ with finite images. Let ¢:Q — F be a homomorphism, where
F is finite. Let N = Ker ¢ NG N ¢! (Ker ¢ N Gy). Then N<;G and
(NN HY = Ny n Hy. 1t follows that there exists a homomorphism
7Gxy G — G/N *5 Gl/Nl, where H = HN/N = H1N1/N1. Since
N<;G, by assumption, we have T = hyk for some h,k € H where
G = G/N. Thus z'hyk € N. It follows that (x 'hyk)y € N and
77 = Rk in Gy = Gi/N;. In Q = Qn, we have zz7! = hyk -
(hayikr) ™! = hyy{ 'R Tt follows that zz; ! (hyyy'h~1)"! € Ker 7. Since
Ker 7 = (N, N)® C Ker ¢, we have (zz71)9 = ho - (yyr e - (ho)™.
This proves the lemma. O

THEOREM 2.7. Let B = FE, - H and F = Fy - H, where Ey and F} are
finite and H is f.g. abelian. Then E xy F' is c.s.

Proof. Since Fy is finite, it is not difficult to see that Cy(E)<fE.
Similarly Cy(F])<;F. Hence E and F are finite extensions of f.g. abelian
groups, whence E and F are c¢.s. By Theorem 2.5, we need only consider
the case of x #¢ y where |jz]| = |l = 2n. Let = hie1fy - - e, fn and
Yy = hzalbl---anbn, where hl,hz S H, €;,a; € E] and fi;bi S Fl. If
hi # hy then T = Ry i ho = 7, where G = E/E, sz F/F, 2 H. Then
z and y are c.d., since G = H is c.s.

So we assume h; = hy. Let § = Cy(F1) N Cy(F). Then S<;E
and S<;F. It follows by Theorem 1.2 that G = E/S x5 F/S is cs.
Now we shall show that T % 73. Clearly |Z|| = ||z} = 2n. Hence if
T ~g ¥, then T ~7 7" for some cyclic permutation 7* of 7. It follows
that (y*)'hlzh € S C H for some A € H. Note (y*)*h lzh € E| »
Fi. Hence (y*)"'h'zh = 1, since (E; * F}) N H = (1). Thus z ~¢ v,
contradicting our assumption. Therefore T otz %, whence = and y are
c.d. O
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In general, the conjugacy separability of free products amalgamated
along retracts is not easy. So in the next section we consider only the
case that retracts are cyclic. However, if retracts are direct factors of
c.s. groups then we can easily see that free products of c.s. groups
amalgamated along direct factors are ¢.s. For, if the G; = E; x H (i € I)
are c.s. then it is easy to see that the E; are also c¢.s. Now the free
product G of the G; amalgamated along H is just a direct product of H
and the free product of the E;. Since free products and direct products
of ¢.s. groups are ¢.s., G is ¢.s.

3. Amalgamating cyclic retracts

Let H be a retract of both F = F; - H and F = F, - H. We define
n={(N,M): Ng;E\,N < E and M<;F;,M < F}.
Then, for each (N, M) & 5, we have a homomorphism
(1) anm B *y F— E[N g F/M,

where H = HN/N = HM/M. Note that H = H is a retract of both
E/N = (Ey/N)-H and F/M = (Fi/M)- H. Then, by Theorem 2.7,
(E *y F)mnm iscs., if H is abelian. Hence we have the following lemma.

LEMMA 3.1. Let E=FE,-H and F = F, - H be cs., where H is f.g.
abelian. Then we have
(a) (E #y F)7mn p is c.s. for each (N, M) € n,
(b) (NF_;Nj,N3_  M;) € n for each (N;, M;) € n, and
(€) NivanenN = (1) and M anenM = (1).

For the split extension £ = E; - H, where H = (h}, we shall consider
the following conditions:

D1 If there exist u,v € Fj such that v ¢ HvH, then there exists
P<E,; such that P < E and u ¢ PHuH.

D2 If there exists u € E; such that [u, h] # 1 for all § 5 0 then, for any
integer € > 1, there exists P<i;F; such that P < E and [u, W] € P
implies € | j.
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Lemma 3.2 Let E—=F,-H and F = F\-H beRF, where H = (h),
and let £ and F satisfy D2. If there exist h® € H and uup - - - u € EyxF)
such that h* & Cy(uy - - - uy.1)Cx{ug), then there exists (N, M) € n such
that i & Cgl -+ Up—r ) Cp{Tur), where G = Grnm.

Proof. Let h* € H and e, f, - - e, f, € FEy % F} such that h* & Cy(e; fi
oo foo1€2)Cr(fy), where e, € Ey and fr € Fy for 1 < k < n (the other
cases are similar). Let Cy(fn) = (A% and Cyleifi--- fa-16n) = (A7)
Then clearly v #£1 # 8 and o £ 0.

Case 1. 3 # 0 and v = 0. Since h* € Cylerfi- - fa1€:)Cu{fa) =
{h?), B does not divide a. Now Cx{efi -+ fa—ien) = (1). It follows that
Culer) = (1) for some 1 < k < n, or Cy(fir) = (1) for some 1 < &' <
n — 1. Here we assume that Cy(e;) = (1) (the other cases are similar).
By D2, there exists P<i;E; such that P < E and [ex, h'] € P implies
8| 3. Since G is RF by Theorem 1.1 and [A!, f,,] # 1for 1 < < 3, there
exists L<1;G such that (b, f,] € L and e;, f; ¢ Lforall 1 <! < 3 and
1<s<n. Let N=LNPand M =LNF;. Then N<sE;, N < E and
Ma,Fy, M a F. 1t follows that (N, M) € n. Now we shall prove that
g Cglerfi - Tn-16n)C(fn), where G = E/N »g F/M = Grnum.
First, we can easily see that Cx(fy) = {Eﬁ) and Cglerfi - fn-1€n) =
C(z0) N Cx(F) 0 -+~ N CplEn) © C(@r) © (7). Since [A| = oo and 8
does not divide o, we have h° ¢ (Eﬁ) = Cglerfi  fao160)Cq(fa), a8
required.

Case 2. 3 = 0 and v = 0. Since Cylerfi--- fumr1€n) = (1), there
exists k or k' such that Cg(er) = (1) or Cy(fr) = (1), where 1 < k < n,
1 < k' <n—1. We consider the case when Cx(e;) = (1) (the other case
is similar). Choose an integer s > |a|. Then h® € (h*). By D2, there
exists P<iyE; such that P < E and [ex, h’] € P implies s { j. Similarly,
there exists Q}<i;Fy such that Q < F and [f,,h’] € Q implies s | 3.
Since G is RF (Theorem 1.1}, there exists L<1;G such that em, fr, & L
foralll <m <n Let N=LNPand M = LNQ. Then clearly
(N, M) € n. Moreover, we have C(f,) C (R°Y and Cxlerfs - - fu1€n) C
CH(#) C ('), where G = E/N s F/M = Guya. It follows that
Crlenfi fao1a)Cii(Fo) C__(Es). Since || = 0o and s > |a|, we have
Eﬂ QI Cﬁ(elfl Tt fn—len)cﬁ(fn)-
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Similar methods can be applied to the following cases:

Case 3. 3=0andy #0.

Case 4. 3# 0 and v # 0.

This completes the proof. |

Now we are ready to prove our main result.

THEOREM 3.3. Let E=FE, - H and F = F, - H be c.s. and satisfy D1
and D2, where H = (h). Then G =E*y F iscs.

Proof. Let = and y be nonconjugate elements in G = E xy F, each
of minimal length in its conjugacy class in G. By Theorem 2.5, we need
only consider the case |z]] = |lyll = 2. Since G = (E,xF}) Hisa
split extension with a retract H, we may write x = h%e f1--- e, fn and
y = hBaiby - - aby,, where e;,a; € F) and f;,b; € Fiforalll <j<n.
Now, if a # 3, then z7g, 5, # yYTE, 5, Where G p & H. This implies
that z and y are c.d. Therefore, we may assume that z = A% fi- e, fn
and y = h%ab;---anb,, where a;,e; € E; and &;, f; € F for all j.
From (b} and (c¢) in Lemma 3.1, we can find (N, M’) € 5 such that
ej,a; € N' and f;,b; & M’ for all j.

Since z ¢ v, by Theorem 1.3 we have y 7%y 2* for all cyclic permu-
tations z* of x. It follows that each of the equations

(2) (‘] : J) ejfj et enfnhaelfk T e;,‘—l.fj—l == h_ihaalbi e anbnhi

has no solution h' € H for each 1 < 7 < n. Hence, we shall find
(N;, M;) € n such that N; C N', M; € M’ and (J : j)mw; u, has no
solution in H7y, a, where my, p; 18 as in {1). Then considering N =
Mi_,N;j and M = N}, M;, (J : j)mnu has no solution in Hmy s for all
1 < j < n. Moreover, we have ||zmyall = [|zfl = ||yl = lymwul = 2n.
It follows from Theorem 1.3 that T £z 7, where G = Gy ar. By (b) and
(a) in Lemma 3.1, we have (N, M) €  and Gmy y is ¢s. Therefore, =
and y are c.d. This completes the proof once we find, for each 1 < j <n,
a suitable (N;, M;) € n such that (J : j}my a, has no solution in Hay, ;.
Here we only consider 7 = 1, since the other equation (J : j) for j > 1 can
be stated as h®ejf}---e, freifi---ej1fin = hih®aiby - - - anbphi, where
e, =h%eh® € Eyand fi=h™frh* € Fyfor j <k <n.
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Since (J : 1) has no solution h' ¢ H, which is equivalent to e, f1 - - - enfr
& Haby - - a,b,H, one of the following will be true:

(1) e, & Ha H or f, ¢ Hb.H for some 1 < r < n, or assuming that
e, € Ha, H and f, € Hb,H for all 1 < r < n, for the remaining
cases,

(1) erfi € Hayb H,

(2) e1fi € HaybhH and e, fies & HaybaoH,

(2’) elfleg = H(J.]blazH and 81f1€2f2 Q Halblagsz,

(TL’) 81f1 g, € Ha1b1 s anH and 81f1 e enfn g Ha1b1 . -anan.

If (1) is true, say, e, ¢ Ha.H for some r, then by D1 there exists
(P,Q) € nsuch that e, ¢ PHa,H. Let Ny = N'NP and My = M'NQ.
Then (Ny, M) € n and (J : 1)my, ar, has no solution in Hmy, ar as
required.

If one of {V}, (2), ..., {(») is true, say f. € Hb.H, e fi---e, €
Haby o, Hande f, e f, & Haby---a,b.H, then we havee; f; -- - e,
= h~*aiby -+ - a.h* and f, = h~*b,h’ for some s,t. Note that ey fi---e.f, &
Haby - --a.b.H if and only if ayb, - - a,h*h™*b. &€ Hayby-- - a,b.H if and
only if 25~ & Cy{aby - a,)Cx(b,). Hence, by Lemma 3.2, there ex-
ists (P, Q) € n such that hs—t & 03(5151---5,,)0,-,(&) in G = Grpg.
Let Ny = NN Pand M; = M'NQ. Then (N}, M) € pand B ¢
Cﬁ(albl“'ar)Cﬁ(E) in G = Gy, ., Hence, we have e\ fy---e.f, &
Hayby-- a,b,H. Thus e f,---e,fn & Hady - -a,b,H. This implies
that (J : 1)my,a, has no solution in H = Hnp, a,. This completes
the proof. O

To generalize Theorem 3.3, we consider the following lemma.

LEMMA 34. Let E=E,-H and F = Fy - H be RF, where H = {t),
and satisfy D1 and D2. Then the split extension G = E +y F' = (E) *
Fy) - H satisfies D1 and D2.

Proof. For D1, let y,w € E| * F] such that y & HwH .

Case 1. ||yl} # |lw] or ||yl = llw|| end the first syllables of y and w
are in the different factors of Ey = Fy. Since F and F are H-separable
(Lemma 2.2), there exist N;<1;F| and M, <(;F} suchthat Ny <« E, M, < F
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and |ly|| = ¥, |lwll = ||wl, where G = E/N;*z F/M, and H =
HN{/N, = HM;/M,. This means that {{7| # ||} or ||[7] = |@| and
the first syllables of 7 and % are in the different factors of £, = F. It
follows that 7 ¢ HwH. Since E, = Ei/N; and F; = Fi/M, are finite,
there exists a least integer y > 0 such that [7,2] = 1 forall Z € E; * F.
Hence § ¢ HwH if and only if 7 # t—5wt® for all 0 < s < . Since G is
RF by Theorem 1.1, there exists L<;G such that y(t~*wt*)~! & L for all
0<s<~v Let Iy = LN(E;+Fy). Then T, <fEy s Fyand L) < G. Let R
be the preimage of L, in G. Then R<i;E; * Fi, R <« G and y ¢ RHwH,
as required.

Case 2. ||yl = llw|| and the first syllables of y and w are in the same
factor of Ey + F1. Let y = e1f1---enfn and w = a3by--- azh,, where
er,ax € Ey and fi, b € Fy (the other cases are similar). Since y & HwH,
y # h7'wh for all h € H. Thus, as in (J : 1} in Theorem 3.3, there
exist N<yEy and M« F, such that N < E, M < F and e, ar € N,
febe @ Mforall 1 < k < nandy g HwH, where G = E/N *5 F/M.
Now, as in the previous case, we can find the required R satisfying D1.

For D2, let y € Fy * Fy such that [y,#] # 1 for all 7 # 0, and let € be
a given integer.

Case 1. ||y|| = 1. Without loss of generality, we let y € E;. Then, by
D2, there exists P<i;E; such that P < E and [y,t'] € P implies € | j.
Let R = (P * F})°N (E,+ F). Then R<;E, + F, and R < G. Moreover,
if iy, #] € R, then [y,#/] € RNE, = P. It follows that, if [y,t] € R, then
€ | j as required.

Case . ||lyfl > 1. Let y = e1f1 - enfn be a reduced word in Ey * Fy,
where ¢, € F; and f; € F| for 1 < [ < n (other cases being similar).
Since [y, t'] # 1 for all j # 0, we have (1) = Cy(y) = Crle1) N Cr(fi) N
«+ N Cy(fa). It follows that Cylex) = (1) or Cy(fy) = (1) for some
k. We assume Cp(e;) = (1) (other cases being similar). By D2, there
exists P<;E; such that P < F and {e;,#'] € P implies € | j. Since
E and F are RF, we can find P <1 E; and Q<1yF) such that P4 <1 E,
Qi<aF,gg Poand fig @y forall1 <I<n. Let N=PFPnNPF and
M = F N @, and consider the homomorphism 7 : G — E/N g F'/M,
where il = HN/N = HM /M. Then ||7|| = ||y|| where 3 = yr. Hence, if
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[7.7') = 1, then ¥ € Cx(y) = Cx(er) N Cx(fi) N - 1 Cx(fa). It follows
that ¥ € Cg(er). Thus [ey,t'] € Ker 7 N By = N C P, which implies
that e | 7. Thus, if (7, ¥ ] =1, then €| j. Since E| and F) are finite, there
exists a least positive integer v such that [7,7'] = 1. Now (7, fe] # 1 for
1 € ¢ < vand Gis RF by Theorem 1.1. It follows that there exists
L<,G such that [y,i‘"] ¢ Lforalll1 <f<r. Let L, =Ln(E *F)
and let R be the preimage of I7 in G. Then R<;E, * F1, R <0 G and, if
ly,t'] € R, then €| j as required. O

More generally we can state Theorem 3.3 as follows:

THEOREM 3.5. Let G; = E; - H (i € I) be a c.s. and satisfy D1
and D2, where H = (t). Then the free product G of the G; (i € I)
amalgamated along H is c.s.

Proof. First we can use Theorem 3.3 and Lemma 3.4 repeatedly to
show that G s c.s. when I is a finite set. For an arbitrary set J, let
z 7t¢ y. Then, we can find a finite subset J of I such that z and y are
contained in the free product G; of the G, (j € J) amalgamated along
{t). Now, there exists a homomorphism 6 : G — G such that ef = 1
foralle € E; (i € I\J) and w8 = w for all w € G; (j € J). Hence
z8 A yb. Since GO =2 G is ¢.s. by above, x and y are c.d. O

In [9], conditions D1 and D2 are used to derive the conjugacy separa-
bility of certain 1-relator groups. It was also proved that finite extensions
of free or f.g. nilpotent groups and certain l-relator groups satisfy D1
and D2. Most of the above groups satisfying D1 and D2 are double coset
separable.

DEFINITION 3.6. A group G is said to be double coset separable if for
every pair A, K of f.g. subgroups of &, and any g,z € G such that
x ¢ HgK, there exists N<i;G such that x ¢ NHgK.

For example, free-by-finite groups [17], polycyclic-by-finite groups [12]
and f.g. Fuchsian groups [16] are double coset separable. Hence those
groups satisfy D1 and D2 by the next observation.

LeMMA 3.7. Let E = E; - (h) be double coset separable. Then E
satisfies D1 and D2.
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Proof. Clearly D1 holds. For D2, let u € E; such that [u, /] # 1 for
any j # 0. Let ¢ > 1 be a given integer. Then h™'uh® & (h%)u(h) for
1 <% <e—1,since (Rh) is a retract. Then there exists N;<i;E such that
h™*uh® & N; (h‘)u(hf) foreach 1 <i<e—1. Let P =nNZ]N;N E;. Then
Pg¢Eyand P E. If [u, h?] € P for j = se — k, where 0 < k < ¢, then
htuhk € P{he)ulhe). 1t follows that k = 0, whence € | j as required. [

COROLLARY 3.8. Let G; —= E; - H (i € I) be ¢.s. and double coset
separable, where H = (t). Then the free product G of the G; (i € I)
amalgamated along H is c.s.

We shall prove that free-by-cyclic groups with nontrivial center satisfy
1 and D2.

LEMMA 3.9. Let A be a free group and let u, f,v € A such that
u % f~iufi for all integers j. Then there exists N<iyA such that Nu #
Nf=ivf? for all j.

Proof. Let A be free on a set X of generators and Ag = {z1,...,Z4)
be a subgroup of A generated by a subset {z1,...,%;} of X such that
u, f,v € A;. Then there is a homomorphism £ : A — Ay such that z,§ =
r;for1 <i<kandyf=1foralye X\{z,...,zc} First we are
going to find the c—th term I'. of the lower central series of A; such
that v & T.f Jvf? for all j. Since free groups are residually nilpotent
by {13], there exists an integer ng such that f,u,v & I'n,. I [v, f] =1
then we can choose ¢ > ng such that uv™! € I'.. It follows that u ¢
T =T.f7vf for all j. Hence, we may assume that [v, f] # 1. Choose
(using [13]) m»; > mp so that [v, f] ¢ T, We shall prove that there
exists ¢ > my such that v & T f~vf7 for all j. If, for each j > ny,
there exists an integer s; such that uy; = f™%v f%, for some y; € I';,
then f~ S"vufsﬂl = fsijf or g1 fE Mg = fesm | where Ay = Ap/Tn,.
Smce Ay is torsmn free nilpotent and f #+ 1, we have 8; — 8y = 0 or

lfv = f. It follows that s; — s, = 0, since [v, f] & I'n;. This implies
that T f Iy fo = T Ty fY = € Njsn [y = (1) by [13]. Hence,
we have v = f~*mvf™, contradicting our assumption. Therefore, there
exists an integer ¢ such that v & T.f~fvf? for all j. It follows that, in
the f.g. nilpotent group Ay = A;/T,, we have u # f~7vf7 for all j. Thus
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vlu £ Fﬁ_J?j for all j. Now A—k is residually finite with respect to
nests [19] and the set {(v=1fv ", F):j€Z}isa nest in Ay x Ag. Hence
there exists N <1y Ay, such that No~% # N(v= fu) 7 f forall j. It follows
that Nu # Nf-JufJ for all 7. Let N be the preimage of N in A. Then
N<sA and Nu # N 3y f7 for all j, as required. O

LEMMA 3.10. Let A be a free group and u, f € A such that [u, f/] # 1
for all § # 0. Then, for any integer ¢ > 1, there exists N<yA such that
lu, f/] € N implies € | j.

Proof. For each 1 < i < € we have f~uft # (f)~*u(f¢)* for all k,
since w # f~9uf? for all j # 0. Then, by Lemma 3.9, there exists N;<yA
such that N;f-iuf? # N{f) *u(f)* for all k. Let N = N{Z{N;. Then
N<yA and [u, f] € N implies € | ;. O

LeMMaA 3.11. Let E = E; - H be a cyclic extension of a free group E,
with nontrivial center, where H = (t). Then E satisfies D1 and D2.

Proof. For D1, let u,v € E) such that u ¢ HvH. Since E; is free, we
may assume that e 1" € Z(F}, where e € E| and n is a positive integer.
Note that v & (t)v(f) if and only if w # ¢t " vt™t™ for all r and
0 < m < n; equivalently, u # t~™e "ve"t™ for all 7 and 0 < m < n. Then,
by Lemma 3.9, there exists NV;<iyEy such that Nit™ut™™ # Nye~"ve for
all r and 0 € m < n. Let N = NE#™Nit™™. Since t™Nit™™<i; Fy, it is
not difficult to see that N<yF;, N Q< E, and u ¢ NHvH.

For D2, let u € E| such that [u,t/] # 1 for all j # 0 and let ¢ > 1 be
a given integer. As above we let e 't* € Z(E), where e € Ey and n is
a positive integer. Then we have u # t7u#’ for all § # 0 if and only if
u # t e Tuet™ for all 7, 0 < m < n except r = 0 = m. By Lemma 3.9,
for each 0 < m < n, there exists N, <ty Ey such that tmut™ & Nje "ue’
for all 7. Also, by Lemma 3.10, there exists Ny<i; £ such that [u,e”] € Ny
implies ¢ | 7. Let N = Moyt (M) N»)t™*. Then N<iyE, N < E, and
[u,#) € N implies € | j, as required. D

THEOREM 3.12. Let G; = F;-{t) (i € I) be an infinite cyclic extension
of E;, where each G; satisfies one of the following:
1. G is free-by-finite.
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G; is polycyclic-by-finite.
G; is a £.g. Fuchsian group.
E; is free and G, has nontrivial center.
G =(t,b : ( ~1p2th%)%), where s > 1.
6. G = (t,b : t"16°th"), where lo| = |[B| or la| = 1 or |8 = 1.
Then the free product G of the G; (i € I) amalgamated along the retract
(t} is c.s.

Bl

Proof. The conjugacy separability of the G; in the theorem is known
by [4,7,6,5,2,9]. The G,’sin 1, 2, and 3 satisfy D1 and D2, since they
are double coset separable (see p.823). The G; in 4 satisfies D1 and D2
by Lemma 3.11. The 1l-relator groups G; in 5 and 6 also satisfy D1 and
D2 by Lemma 5.5 and Theorem 6.4 in [9]. Hence the result follows from
Theorem 3.5. O
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