Numerical Investigation of Turbulence Structure and Suspended Sediment Transport in Vegetated Open-Channel Flows

식생된 개수로에서 난류 구조와 부유사 이동 현상의 수치해석

  • Gang, Hyeong-Sik (Department of Civil Engineering, Graduate Schoo, Yonsei University) ;
  • Choe, Seong-Uk (School of Civil, Urban, and Architectural Engineering, Yonsei University)
  • 강형식 (연새대학교 대학원 토목공학과) ;
  • 최성욱 (연세대학교사회환경.건축공학부)
  • Published : 2000.10.01

Abstract

Turbulence structure and suspended sediment transport capacity in vegetated open-channel flows are investigated numerically in the present paper. The $\textsc{k}-\;\varepsilon$ model is employed for the turbulence closure. Mean velocity and turbulence characteristics including turbulence intensity, Reynolds stress, and production and dissipation of turbulence kinetic energy are evaluated and compared with measurement data available in the literature. The numerical results show that mean velocity is diminished due to the drag provided by vegetation, which results in the reduction of turbulence intensity and Reynolds stress. For submerged vegetation, the shear at the top of vegetation dominates turbulence production, and the turbulence production within vegetation is characterized by wakes. For emergent condition, it is observed that the turbulence generation is dominated by wakes within vegetation. In general, simulated profiles compares favorably to measured data. Computed values of eddy viscosity are used to solve the conservation equation for suspended sediment, yielding sediment concentration more uniform over the depth compared with the one in the plain channel. The simulation reveals that the suspended load decreases as the vegetation density increases and the suspended load increases as the particle diameter decreases for the same vegetation density.

본 연구에서는 식생된 개수로에서의 난류 구조와 부유사 이동을 수치모의하였다. 난류폐합식으로는 $\textsc{k}-\;\varepsilon$ 난류모형을 사용하였다. 수치모의를 통해 평균유속, 난류강도, 레이놀즈 응력, 난류에너지 생성 및 소멸의 분포를 계산하였으며, 기존의 실험결과와 비교하였다. 식생에 의한 항력으로 인하여 평균유속이 전반적으로 감소되었으며, 이에 따라 난류강도와 레이놀즈 응력의 분포 역시 약화되었다. 침수식생의 경우, 식생높이보다 높은 구간에서는 전단에 의한 난류에너지 생성이 지배적이며, 식생높이 보다 낮은 구간에서는 후류에 의한 난류에너지 생성이 지배적임을 확인하였다. 또한 정수식생의 경우, 전채 수심에 걸쳐 후류에 의한 난류에너지 생성이 지배적으로 발생하였다. 대체적으로 수치모의에 의한 결과가 실험값과 유사한 양상을 보이는 것이 확인되었다. 수치모형으로부터 계산된 난류동점성계수 분포를 이용하여 부유사 보존방정식을 수치해석하였다. 식생된 개수로에서의 부유사 농도는 일반 개수로에 비해 전 수심에 걸쳐 균일하게 분포하였다. 또한 식생밀도가 증가할수록 부유사량은 감소하며, 동일한 식생밀도에 대해서는 입자의 크기가 작을수록 부유사량이 증가함을 확인하였다.

Keywords

References

  1. 권기원, 최성욱 (2000). '식생된 개수로 흐름의 ${\kappa}-{\varepsilon}$ 난류해석.' 대한토목학회논문집, 대한토목학회, 제20권, 제1-B호, pp. 11-21
  2. 이원환 (1997). 하천공학, 동명사
  3. 우효섭, 이진원, 이두한, 박재로 (1999). '생물재료를 이용한 저수호안의 세굴저항성 평가 하천복원 시험연구 결과의 기술전파.' 대한토목학회지, 대한토목학회, 제47회, 제11호, pp. 71-80
  4. Burke, R.W. and Stolzenbach, K.D. (1983). Free surface flow through salt marsh grass. MIT-Sea Grant Report MITSG 83-16, Cambridge Mass., 252
  5. Celik, I. and Rodi, W. (1984). 'Simulation of free-surface effects in turbulence channel flows.' Physico-Chem. Hydrodyn., Vol. 5, pp. 217-227
  6. Choi, S.U. (1999a). 'Backwater computation for vegetated compound open-channel flows.' ASCE International Water Resources Engineering Conference, Seattle, USA
  7. Choi, S.U. (1999b). 'Backwater equation for vegetated open-channel flows.' Journal of Civil Engineering, KSCE, Vol. 3, No.4, pp. 369-377
  8. Demissie, M. (1990). 'Sediment yield and accumulation in the Cache River.' National Hydraulic Engineering Conference, ASCE, San Diego, California
  9. Dunn, C.J. (1996). Experimental determination of drag coefficients in open channel with simulated vegetation. M.S. Thesis, University of Illinois at Urbana - Champaign, Urbana, IL
  10. Einstein, H.A. (1950). The bed-load function for sediment transportation in open channel flows. U.S. Department Agriculture, Soil Conservation Service, T.B. No. 1026
  11. Garcia, M. and Parker, G. (1991). 'Entrainment of bed sediment into suspension.' Journal of Hydraulic Engineering, ASCE, Vol. 117, No.4, pp, 414-435 https://doi.org/10.1061/(ASCE)0733-9429(1991)117:4(414)
  12. Hayes, J.C. Barfield, B.J., and Barnhisel, R.I. (1978). 'Evaluation of grass characteristics related to sediment filtration.' Meeting of the American Society of Agricultural Engineers, Chicago, 78-2513
  13. Hossain, M.S. (1980). Mathematische modellierung von turbulenten auftrie-bsstromungen. Ph.D. Thesis, University of Karlsruhe, Germany
  14. Launder, B.E. and Spalding, D.B. (1974). 'The numerical computation of turbulent flow.' Comput, Methods Appl. Mech. Eng., 3, 269-289 https://doi.org/10.1016/0045-7825(74)90029-2
  15. Lopez, F. (1994). Near -wall turbulent coherent structures and their role on sediment transport in smooth - bed open - channel flows. M.S. Thesis, University of Illinois at Urbana - Champaign
  16. Lopez, F. (1997). Open-channel flow with roughness elements of different spanwise aspect ratios: Turbulence Structure and Numerical Modeling. Ph.D. Thesis, University of Illinois at Urbana-Champaign, IL
  17. Lopez, F. and Garcia, M. (1997). Open-channel flow through simulated vegetation: Turbulence modeling and sediment transport. Wetlands Res. Program Tech. Rep. WRP-CP-10, Waterw. Exp. Stn., Vicksburg
  18. Lopez, F. and Garcia, M. (1998). 'Open-cahnnel flow through simulated vegetation: Suspended sediment transport modeling.' Water Resource Research, IAHR, Vol. 34, No.9, pp. 2341-2352 https://doi.org/10.1029/98WR01922
  19. Naot, D., Nezu, I., and Nakagawa, H. (1996). 'Hydrodynamic behavior of partly vegetated open channels.' Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 11, pp. 625-633 https://doi.org/10.1061/(ASCE)0733-9429(1996)122:11(625)
  20. Nepf, H.M. (1999). 'Drag, turbulence, and diffusion in flow through emergent vegetation.' Water Resource Research, Vol. 35, No.2, pp. 479-489 https://doi.org/10.1029/1998WR900069
  21. Nepf, H.M. and Vivoni, E.R. (1999). 'Turbulence structure in depth - limited, vegetated flow: Transition between emergent and submerged regimes.' 28th IAHR congress, Graz, Austria
  22. Rodi, W. (1993). Turbulence models and their application in hydraulics: A state of the art. 3rd Edition, Interantional Association for Hydraulic Research, Delft, The Netherlands
  23. Svensson, U. (1998). PROBE Swedish Meteorlogical and Hydrological Institute, Norrkoping, Sweden
  24. Tollner, E.W., Barfield, B.J., and Haynes, J.C. (1982). 'Sedimentology of erect vegetal filters.' Journal of Hydraulic Division, ASCE, Vol. 108, No. 12, pp. 1518-1531