DOI QR코드

DOI QR Code

Measurements of Temperature and OH Radical Distributions in Flame Hydrolysis Deposition Process

화염 가수분해 증착공정에서 온도 및 OH 분포측정

  • 황준영 (서울대학교 정밀기계설계공동연 나도입자제어연구단) ;
  • 길용석 (서울대학교 정밀기계설계공동연 나도입자제어연구단(현) 송도테크노파크) ;
  • 김정익 (서울대학교 대학원) ;
  • 최만수 (서울대학교 기계항공공학부) ;
  • 정석호 (서울대학교 기계항공공학부)
  • Published : 2000.11.01

Abstract

The effects of SiCl$_4$addition on flame structures have been studied in flame hydrolysis deposition (FHD) processes using Coherent anti-Stokes Raman spectroscopy (CARS) and planar laser induced fluorescence (PLIF) to measure temperatures and OH concentrations, respectively. The results demonstrate that even a small amount of SiCl$_4$ addition can change thermal and chemical structures of H$_2$/O$_2$ diffusion flames. When SiCl$_4$ is added to a flame temperature decreases in non-reacting zone due to the increases in both specific heat and density of the gas mixture, while flame temperature increase in particle formation zone due to the heat release through hydrolysis and oxidation reactions of SiCl$_4$. It is also found that OH concentration decreases dramatically in particle formation zone where temperatures increase. This can be attributed to consumption of oxidative species and generation of HCl during silica formation.

Keywords

References

  1. Kawachi, M., Yasu, M., and Edahiro, T., 1983, 'Fabrication of $SiO{_2}$ - $Tio{_2}$ Glass Planar Optical Waveguides by Flame Hydrolysis Deposition,' Electronics Letters, Vol. 19, No. 15, pp. 583-584 https://doi.org/10.1049/el:19830398
  2. Chung, S. L. and Katz, J. L., 1985, 'The Counterflow Diffusion Flame Burner: A New Tool for the Study of the Nucleation of Refractory Compounds,' Combustion and Flame, Vol. 61, pp. 271-284 https://doi.org/10.1016/0010-2180(85)90108-7
  3. Zachariah, M. R., Chin, D., Semerjian, H. G. and Katz, J. L., 1989, 'Dynamic Light Scattering and Angular Dissymmetry for the In Situ Measurement of Silicon Dioxide Particle Synthesis in Flames,' Applied Optics, Vol. 28, No. 3, pp. 530-536
  4. Choi, M., Cho, J., Lee, J. and Kim, H. W., 1999, 'Measurements of Silica Aggregate Particle Growth Using Light Scattering and Thermophoretic Sampling in a Growth Diffusion Flame,' Journal of Nanoparticle Research, Vol. 1, pp. 169-183 https://doi.org/10.1023/A:1010092113802
  5. Mcenally, C. S., Koylu, U. O., Pfefferle, L. D. and Rosner, D. E., 1997, 'Soot Volume Fraction and Temperature Measurements in Laminar Nonpremixed Flames Using Thermocouples,' Combustion and Flame, Vol. 109, pp. 701-720 https://doi.org/10.1016/S0010-2180(97)00054-0
  6. Allendorf, M. D., Bautista, J. R., and Potkay, E., 1989, 'Temperature Measurements in a Vapor Axial Deposition Flame by Spontaneous Raman Spectroscopy,' Journal of Applied Physics, Vol. 66, No. 1, pp. 5046-5051 https://doi.org/10.1063/1.343778
  7. Park, S. N., Park, C. W., Hahn, J. W., Gil, Y. S. and Chung, S. H., 1996, 'Precision and Accuracy of CARS Spectrometer for Instantaneous Temperature Measurement,' Journal of Optical Society of Korea, Vol. 7, No. 4, pp. 348-356
  8. Alden, M., Edner, H., Hdmstedt, G., Svanberg, S., and Hoegberg, T., 1982, 'Single-Pulse Laser-Induced OH Fluorescence in an Atmospheric Flame Spatially Resolved with a Diode Array Director,' Applied Optics, Vol. 21, pp. 1236-1240
  9. Long, M .B., Webber, B. F., and Chang, R. K., 1979, 'Instantaneous Two-Dimensional Concentration Measurements in a Jet Flow by Mie Scattering,' Applied Physics Letters, Vol. 34, pp. 22-24 https://doi.org/10.1063/1.90584
  10. Lee, S. R. and Chung, S. H., 1994, 'On the Structure of Hydrogen Diffusion Flames with Reduced Kinetic Mechanisms,' Combustion Science and Technology, Vol. 96, pp. 247-277 https://doi.org/10.1080/00102209408935358
  11. Ho, W., Yu, Q.-R., and Bozzelli, J. W., 1992, Kinetic Study on Pyrolysis and Oxiadtion of CH3CI in Ar/H2/O2 Mixtures,' Combustion Science and Technology, Vol. 85, pp. 23-63 https://doi.org/10.1080/00102209208947158