초록
Several Pt-based oxidation catalysts with different loading were prepared with various metal precursor solutions and characterized with H$_2$ chemisorption and TEM for Pt particle size. V was added to Pt-based catalyst for inhibiting SO$_2$oxidation reaction, as result, Pt-V/Ti-Si catalyst prepared by ERMS(Free Reduced Metal in Solution) method showed high enough activity and better inhibition on SO$_2$oxidation than Pt only catalyst. Optimum Pt particle size for diesel oxidation reaction turned out to be the size of around 20 nm. A prototype catalyst was prepared for light=duty diesel passenger car, and teated for the emission reduction performance with Korean regulation test mode(CVS-75 mode) on chassis dynamometer. The catalyst shows the performance reduction of 75~94% for CO, 53~67% for HC and 10~31% for PM. In the case of heavy-duty diesel catalyst, the domestic formal regulation teat mode D-13 was adopted for both Na engine and Turbo engine. The conversions of CO and THC are high enough(86% and 41%) while the reductions of NOx and PM are relatively low(3~11%).