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ABSTRACT

In this paper we propose an approximate method to estimate the cell loss probability(CLP) due to buffer

overflow in ATM networks. The main idea is to relate the buffer capacity with the CLP target in explicit

formula by using the approximate upper bound for the tail distribution of a queue. The significance of the

proposition lies in the fact that we can obtain the expected CLP by using only the source traffic data represented

by mean rate and its variance. To that purpose we consider the problem of estimating the cell loss measures

from the statistical viewpoint such that the probability of cell loss due to buffer overflow does not exceed a

target value. In obtaining the exact solution we use a typical matrix analytic method for GI/D/1/B queue where

B is the queue size.

Finally, in order to investigate the accuracy of the result, we present both the approximate and exact results of

the numerical computation and give some discussion.

I. Introduction

The main feature of ATM switch with
asynchronous cell transfer capabilities lies in the
statistical multiplexing of cells in a buffer. Since
the buffer size is finite in a real system and there
is a case when the number of cells bound for a
particular output buffer from multiple inputs
exceeds the available queue space in an arbitrary
time slot, the buffer overflow occurs and a part
of arriving cells are lost.

There are two ways to quantify the cell
overflow for a buffer in ATM switching system :
finite queue model and infinite queue model. The
former can be obtained by G/Djc/B queueing
model, where B is the buffer size'. However, in
that case, we have to compute the steady-state
probability for the queueing system(See the
Appendix), which incurs a high cost for computa-
tion if B is very large. Also, one can not repre-
sent and explicit relationship between the source
traffic parameter, the CLP value and the buffer

size from the finite queue model.

The infinite queue model can be used as an
approximation for the finite one. If the required
CLP value for a source is assumed k for a queue
capacity B, then the formula for the upper bound
of the tail distribution of the queue contents x

Prob{x>B} <k, 1

where x is the queue length at observation
point, can be used as an approximation of a CLP
formula for a finite queue model™.

The seminal works on the analytical model
dealing with the approximations for the upper
bound of the tail distribution of the queue
contents have been proposed by literature [4,6].
Hui” applied the large deviation techniques to
evaluate the probability of burst in the broadband
networks.

Guerin et al.” made comprehensive discussions
for the approximate analysis to the equivalent
capacity for the networks, whose concept is
similar to the statistical QoS measures.
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The purpose of this paper is to use the large
deviation principle and the concept of statistical
QoS measures to obtain a simple formula for the
upper bound of the buffer overflow probability
(thus, the cell loss probability) such that the
computational complexity does not scale with the
capacity of the buffer and the arrival process.
This can be realised by an approximation by
exponential upper bound and the use mean and
variance of arrival rate rather than the conven-
tional parametric traffic description such as ON-
OFF process.

This paper is organised as follows:In section
II, we describe the points of the discussion of
this paper. Section [ presents the procedure for
deriving the upper bound on the tail probability
of GI/D/c queue. In section IV, we discuss about
the cell loss measures. In section V the discuss-
ion about the numerical results are given. Section

VI summarises the paper.

. Problem description

As mentioned in the previous section, the swich
should guarantee the cell rate and delay require-
ment to a connection under any situation during
its connection. The maximum cell delay can be
guaranteed by the size of the buffer. So, in
designing and managing the ATM networks, one
of the main performance issues should be taken
into account is to guarantee the cell loss Quality-
of-Service(QoS) negotiated during the contraction
phase or to dimension the buffer(alternatively,
queue) size in order not to violate the negotiated
cell loss QoS.

This paper describes the issue, that is, we
consider a method to estimate the cell loss perfor-
mance in ATM networks for an arbitrary small
buffer size with heavy offered load in doing that
we assume a switch buffer with random traffic
source.

In [8] it is stated that the random traffic source
gives a worse CLP for the same load generated
by CBR of VBR sources. So, we can a random
traffic as a good upper bound for the buffer
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estimation

The main idea is to estimate the CLP perfor-
mance for and arbitrary buffer from both the
source traffic data represented by mean rate and
its variance and the service capacity of the
switch.

Following the ATM Forum’s traffic description,
the source traffic can be described in parameters
such as the mean cell rate, peak cell rate, etc.
However, the typical and simplest parameters
which the system designer can obtain from a
sample of measured sources are the mean rate
and its variance.

We will not deviate our discussion by discuss-
ing the method to obtain the data for mean rate
and the variance. It can be deduced from the
previous experience on the traffic of similar kind
or it can be computed from the original source
traffic parameters

To our purpose, the statitical description as
shown in the formula (1) is useful, and we will
propose a method to derive a relationship between
the source traffic profile, the channel capacity of
the network, and the required QoS targets in the
subsequent sections.

. Upper bound for the buffer tail
probability

If we investigate the formula (1) we can find
that there are three factors that are closely related
to the CLP:the source characteristics, the service
rate, and the queue capacity. The service rate is
assumed to be a fixed value of ¢ cells per time
slot. The source characteristics are not shown
explicitly in that formula, but it is embedded in
the formula for the k.

Our concern in this paper is to represent the
relationship between the service rate ¢ and the
queue capacity B that should be provided in order
to guarantee the target cell loss QoS under the
condition that the source traffic profiles are given.

Suppose that time is divided into slots of unit
length which is the time required to transsmit a
cell, and a batch of cells which arrive during
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each slot follows a general renewal process. First,
let us define some variables concerning the
system. Let the random variable xx be the queue
length at the boundary of time slot &, k=1,2, ..,
and we assume that it is zero just before the start
of the slot 1.

Let the i.i.d. random variable y. be the
number of cells arrived during time slot k.
Assume that ¢ cells depart the queue just before
the end of time slot k, if there is any. So, the
order of cell input-output is arrival first. If we
assume a with heavy load ¢ cells can depart the
queue every time slot with probability almost the
same as 1.

We can obtain a formula for the number of
cells remained in the queue at the beginning of

time slot k, xi, given by
X =[xk + yg - ¢, 0]+, 2

where [z, 0] denotes the larger number
between z and zero.

Note that, under the abover assumptions, when
the service discipline is FCFS (First Come First
Served), x; repesents an unfinished amount of
work (unit:cell) in the queue seen by a first
arriving cell of time slot £, which corresponds to
the waiting time of the arriving cell in the queue.

Let us define the variation of the queue length
in a time slot k to be

Vi = Yk - C 3)

From the stability condition vi has to satisfy
Efw] ¢ 0. Because E[w] is finite v has the
moment generating function (mgf)w

v() = E[ ™]. )

Kingman proposed the tail distribution of the

I we

queue occupancy for the GI/GI/1 queue
rewrite it in discrete-time context and for the
GI/D/c queue, where ¢ is the unmber of the
server, we have, for k-— oo, the following formula
for the tail distribution of the queue occupancy x

in equilibrium :

Prob{x > B} < ¢ %, (5
where @ satisfies
8=inf[0,0>0:E[™]<1] (6)

which is translated into the minimum of the
positive solution of the inequality

E[e™]<1,0<8< o %)

In formula (5), 6@ mainly determines the
behavior of buffer overflow (the derivative of the
curve) and so it is called the decay rate. The
formula (5) is considered to be a little conservat-
ive, but it is widely used in a approximate analy-
sis because if its advantage of simplicity in
computation. The decay equation (7) can be
represented in a closed formula for a few specific
arrival process such as a Poisson binomial
process.

In order to represent the decay rate in an
explicit formula for the arrival process without
explicit distribution function, we have to develop
a more tractable means, which is the main
purpose of this section.

Let us rewrite (7) into

E[e™]<e’ (8)

In order to obtain a formula for @ which
satisfies the inequality (8), let us introduce an
error € such that the following equation is
satisfied :

E[ esm] te = 9

Now that € should have a very small value of
the difference between E [ ¢™]- ¢?. For that we

essume that € is a small fraction of ¢/, and it

is given as follow :
€=§e’. (10)

where £ is a very small value (§ <<1).

Let the mgf of the cell arrival y(8) = E [ ¢™].
Using the power series expansion of the expon-
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ential function, y(#) can be represented as follos :
y(0)=1+E[y]0+...+E[y"]fl—,n+..., (11)

where E[y"] is the n-th moment of random
variable y.

We have an information for the mean and vari-
ance of the source traffic, so we truncate the
series (11) into the order of two (term with the
second moment), and let A = E[y] and let c’=
E[yz]-A ? we obtain

y@) =1+49 + OzTHZ P 12)

On the other hand, the equation (9) is alternati-
vely represneted by

¥6) +e = & (13)

Then, from (10), (12), (13), and also truncating
the power series expansion of the formula e into
second order of 6, we have a unique positive

solution given by

where o=(A—(1—- 80’ —2&d + 4~ (1-8)

For the case of a more rough approximation of
€ equal to zero, refer to [7]

If we put the formula (14) into (5) we can
obtain an explicit formula for the upper bound of
cell loss probability due to buffer overflow
described by the service capacity and the source
traffic profile.

IV. Discussion on Cell Loss
Measures

As we assumed the CLP as the QoS measure,
we will relate them with the result for tail
distribution of the queue occupancy given is the
previous section, This is represented in inequality
(1), which means by the probability that the
queue length x in equilibrium exceeds the thres-
hold value B be not greater than k, From the
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inequalities (5) and (1) we obtain a formula for
the upper bound on the CLP as a function of
queue capacity B, which is given by

k= e (15)

Alternatively, we can rewrite a formula for the
required buffer size from the above formula
(Refer to [7] for more detailed discussion and
some results for B as a function of CLP). The
physical meaning of the last phrase is as follows :
The queue capacity required by an ATM switch
is easily calculated if one only knows the traffic
parameters, the target CLP value for the source,
and the channel capacity.

On the other hand, if we consider an accurate
solution for the above mentioned problem, it can
be obtained by using a finite queueing system
GI/D/C/B, and the CLP is simpley given by a
probability that the buffer is full. So, if the
equilibrium probability that the buffer is full is
given by =(B), this corresponds to the CLP itself.
For detailed procedure for obtaining #(B), refer to
Appendix.

Note, however, that for the finite queueing
model we can not represent an explicit relation-
ship between the CLP target and the buffer size
as well as the source traffic profile, whereas we
could represent it explicitly in infinite queueing
model. This is the main motivation of considering
the approximation for infinite queueing model.

In addition, we can also calculate the required
channel capacity c¢ if the traffic parameters and
the target CLP value for the source as well as
the buffer capacity B is known [7].

V. Numerical Results and
Discussion

In order to compare the performance obtained
by the approximate and exact ananlyses, we have
to assume an explicit and analytical cell arrival
process to the multiplexer, So, let us assume that
the aggregated input to the output buffer of ATM
multiplxer from N sources is assumed to follow a
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binomial process, and we denote by the mean
number of the binomial arrival process and its
variance A = Nr and o°= Nrs, respectively, where r
is the probability that a cell is generated by a
source in a slot, and s=1-r. The associated
sources, with number equal to N, are assumed to
have a very long holding time compared with a
microscopic cell time slot, and it is assumed to
be N=50. The service rate is assumed to be c=1.

Usually, the cell arrival in ATM network is
bursty. For the result assuming more burstier
process than the binomial one, refer to [7] by
authors.

Fig. 1 illustrates the CLP versus the offered
load for the buffer capacity B =10. In Fig.1 three
results are shown : Exact, Approxl, and Approx2,
which is the result obtained by the exact solution,
the approximate solution with § =0, and the

approximate solution with § = 0.001, respectively.
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Fig. 1 CLP versus offered load for B=10.

As for the two approximate solutions, we could
not find much difference between them. So, the
assumption € =0 can be applied for the simplicity
of the computation.

From Fig. 1 we can find that the CLP obtained
by approximate method sees the cell loss
optimistically or pessimistically depending on the
load in the buffer. When the buffer is lightly
loaded the approximate method estimates the CLP
more optimistically than that obtained by exact
solution.

However, as the offered load increases to about
0.875 the two results almost coincide, after that

the approximate results overstimates (sees

pessimistically) the CLP compared with the exact
result. This trend can be observed for the case of
B greater than 10, which is presented in the
following figures.

Fig. 2 illustrates the CLP versus the offered
load for the buffer capacity B=20. We can find
that the CLP for B=20 follows a little more
steep curvature than that for B =10, and with
different order. We can find this trend for B =30,
too.
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Fig.2 CLP versus offered load for B =20

Fig. 3 illustrates the CLP versus the offered
load for the buffer capacity B = 30.
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Fig.3 CLP versus offered load for B =30

From the three figures presented above, we can
find one more fact:the crossover point between
the approximate solution and the exact solution
shifts toward right as the buffer capacity is
becomes large.

We also found that the proposed method could
be useful only the very heavily loaded network.
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VI. Conclusion

In this paper, we presented a method for
estimating the CLP in an ATM switch with
output buffer and compared its results with those
obtained by the exact solution.

In obtaining the approximate solutio for the tail
distribution of the buffer occupancy, we used a
large deviation approximation method for estimat-
ing the tail distribution of GI/D/c queue.

Via numerical experiment we investigated the
accuracy of the proposed method, and found that
the approximate solution can estimate relatively,
well the CLP in high load regions. More over,
even though we did not show the required buffer
capacity for the target CLP value (refer to [7] for
this mater), the proposed method can represent an
explicit formula for the buffer capacity needed to
guarantee the CLP as a function of traffic profile
and CLP. This is a very strong point of the
proposition compared with the exact solution.

The result of this paper can be used in the esti-
mation of the buffer performance from the
ststistical aspects for the high performance commu-
nication networks in which the error such as the
cell loss due to queue overflow is considered to
be a rare event and we have only the traffic
profile of mean rate and its variance, which is
actually the most probable case in the field.

Appendix

Let us begin from equation (2). It is easily
found that the sequence (xi), k>0, constitutes a
Markov chain™, and its state transition probability
is defined by

P(i, ])=PV((xk+1=]|Xk=l)
0<i<B,0<j<B (16)

Then, we have, for 0 <i <c,

Priy=j=p;,, 0<;<B-1,
o, = (17)
Pr{y>B}=P3, i+B,
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and for c+1 <i < B,
Di-ivi» 1—1<j<B—1,
i, )= Pg_is1, j=B, (18)
0, otherwise,

The state transition matrix P=(p(i, j)), 0<i<B
and 0 <j <B, is given by

0 1 0 eee e B-1 B
0 b b1 b2 pp-1 Ps
1 by b1 P2 bp1 P
S I ot P o
P= C+1 0 D[) pl ...... pB.—Z PB'—l ( )
B_l 0 o e 0 DO pl I)2
B 0 ......... 0 po P1

If we let @(n) be the probability that the queue
length equals n in equilibrium and we denote the
stationary probability vector of the Markov chain
by =x, a=(x(0), (1), .-, 7(B)), then =is the
solution of the matrix equation given by #P=m=,
me =1, where P is the state transition matrix of
the queue occupancy and e is the (B+1)X1
column matrix with all elements equal to one.
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