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ABSTRACT

We prove the existence of initial fuzzy quasi-proximity spaces. We study the relationship between the initial
structure of the fuzzy closure spaces and that of fuzzy quasi-proximity spaces. We give some examples of

those.

1. Introduction

A.S. Mashhour and M.H. Ghanim [14} introduced
fuzzy closure spaces as a generalization of closure
spaces. In [10], it was introduceda fuzzy quasi-proximity
space in a sense of {4]. It is weaker than the definitions
of AK. Katsaras and C.G. Petalas [8] and others
[5,7,9]. In [8], it was proved the existence of initial
fuzzy proximity spaces in a view of topogenous order.
We reprove it with respect to the relation of fuzzy
quasi-proximity in our sense. Furthermore, M. Khare
[9] prove the existence of the coarsest proximity on X
for which each proximity is finer than every given
proximities on X. The existence of our sense is more
general than it of [9]. In particular, we study the
relationship between the initial structure of the fuzzy
closure spaces and that of fuzzy quasi-proximity
spaces. We give some examples of those.

2. Preliminaries

Throughout this paper., / denote the unit interval. A
member i of X is called a fuzzy set. 0 and T denote
constant fuzzy sets taking the values 0 and 1 on X,
respectively. For A, uE /X the fuzzy set A is quasi-
coincident with p, denoted by A g u, if there exists x
€X such that Ax)+u(x)>1. If A is not quasi-
coincident with y, we denote A g i Let f: X—Y be
a function, u€ /¥ and vEIY We define:

sup{pu()fxe A({yH} if 1y H =0,

A ) —{ o
0, if £ (v h=0.

and fUV(O)=Vf(x)).

Lemma 2.1 [4,11] For A, u, 1,7, we have the
following properties.

() If A g u, then ANu=0.

(2) Aguift A<T —p
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(3)x,q V e r i iff there exists i€ I'such that x, ¢ iy
(4 If f: X—Yis a function and A g , then RA) g AL).

Lemma 2.2 [11,12] If f: X—>Y, then we have the
following properties for direct and inverse image of
fuzzy sets under mappings: for v, &Y and u, (1, F,

(1) v2f{f-(v)) with equality if f is surjective,

(2) u<f'(f) with equality if f is injective,

QA -v=1-f"wm,

4 AT =) =1 - fiw if £ is bijective,

&) fHUNV e =Vier fU(W),

©) [ (Nerv) =Ny (W),

(M AR \/ierﬂf) =V r f),

(8 AN ier) = Ner ) with equality if f is
injective.

Definition 2.3 [2] A subset Tof F¥ is called a fuzzy
topology on X if it satisfies the following conditions:

(O 0, 1=17.

(02) If py, (=T, then Y AN ILET.

(03) If ;=T for each iET, then V €T

The pair (X, T) is called a fuzzy topological space.

Let (X, ), (¥, T) be fuzzy topological spaces. A
function f: (X, T))—=(Y. T.) is called fuzzy continuous if
S weT, for all uE T,

Definition 2.4 [14] A function C : F—[Xis called
a fuzzy closure operator on X if it satisfies the following
conditions: N

(CH Cc(0) = 0.

(C2) C(H)y= A, for all AKX,

(C3) C(AV ) = CAHV C), for all A, usr~.

The pair (X, C) is called a fuzzy closure space.

A fuzzy closure space (X, C) is called ropological
provided that

(C4) C(C(A)) = C(A), for all AEK.

Let (X, C)) and (¥, C,) be fuzzy closure spaces. A
function f : (X, C)—(¥, Cy) is calleda fuzzy closure
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map (for short C-map) if for all A€, AC(AH)) <
G(id).

Theorem 2.5 [11,12] Let (X, 7) be a fuzzy
topological space. We define an operator C;: KX as
follows: for each AE

CAA=N{u | uzd, 1-peq.

Then (X, Cy) is a topological fuzzy closure space.

Theorem 2.6 [11,12] Let (X, C) be a fuzzy closure
space. Define 7 on X by

T={T - A] CA = AL

Then:
(1) 7; is a fuzzy topology on X.
(2) C= Cq. iff (X, O) is topological.

Theorem 2.7 [11] Let (X, 7) be a fuzzy
topological space. Then T, = T

Definition 2.8 [4,10] A binary relation & on I¥ is
said to be a fuzzy quasi-proximity on X which satisfies
the following conditions: for A, y, pEX,

(FQP1) (T, 0)¢ 8 and (1, D)ed.

(FQP2) (AV p, ) ESiff (A, < or (p, W)€ S and

(u, AVPYES iff (u, VES or (U, PES.

(FQP3) If (A, )¢ 6, then A ¢ p.

The pair (X, 9) is called a fuzzy quasi-proximity
space.

A fuzzy quasi-proximity space (X, 6) is called a
Sfuzzy proximity space if it satisfies:

(FP) If (A, <6 for A, uEK, then (u, HEE.

Let & and & be fuzzy quasi-proximities on X. We
say &, is finer than & (&, is coarser than &) if (A, 1)
€4, implies (4, ES,.

Remark 1. Let (X, d) be a fuzzy quasi-proximity
space.

(D) If (A, v) 8 and p=< 4, then, by (FQP2), we have
(p, V& 6.

(2) We define a binary relation 8! on /X if for any
A UEF,

A, et iff (u, HES

Then (X, 87') be a fuzzy quasi-proximity space.

Theorem 2.9 [4] Let (X, §) be a fuzzy quasi-

proximity space. For each AE /X, we define operator
Cs : =1 as follows:

C{=N{T —-pl(p Led}

Then (X, Cj) is a fuzzy closure space.
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Theorem 2.10 [10] Let (X, C) be a fuzzy closure
space. We define a binary relation & on /¥ as follows:
for A, ueKX

(A weéciff 2 g C(w).

Then:

(1) Cge=C.

(2) For any fuzzy quasi-proximity don X, &, is finer
than &.

Corollary 2.11 Let (X, 7) be a fuzzy topological
space. Then T3 = 7.

Let (X, &) and (Y, §) be fuzzy quasi-proximity
spaces. A function f: (X, 6)—(Y, &) is a fuzzy quasi-
proximity map (for short, P-map) if for each (1, VE
), we have (fu), AV)E 6, equivalently, (p, & &, we
have (f"'(p), f(nm)e 6.

Theorem 2.12 [4,10] Let (X, &) and (¥, &,) be
fuzzy quasi-proximity spaces.

If f: X, &) &) is a P-map, then:

D) 7 X, Cs)—(Y, Cs,) is a C-map.

(2) Cs5,(F (W <f(Cs(w)), for each usr.

3 f: X, Tes) (Y, Tes) is a fuzzy continuous map.

3. Initial fuzzy quasi-proximities

Definition 3.1 Let (X, 8).cr be a family of fuzzy
quasi-proximity spaces. Let X be a set and, for each i
&1, f.: X—X, a function. The initial structure & is the
coarsest fuzzy quasi-proximity on X for which each f;
is a P-map.

Theorem 3.2 (Existence of initial structure) Let
{(X;, 8) | iET} be a family of fuzzy quasi-proximity
spaces. Let X be a set and, for each i<T, f, : X—X;a
mapping. Define a binary relation §C F X /X on X by (4,
e Siff there exist finite families {4, | A=V £, 4} and
(i | =V &, w} satisfying the following condition: for
any A, 4 there exists €I such that (A,
f; ()€ &y, Then:

(1) & is the initial structure on X.

(2) A map f: (¥, 6)—>(X, d) is a P-map iff f;o f(Y,
6)—(X, &) is a P-map for each iET.

Proof. (1) First, we will show that § is a fuzzy
quasi-proximity on X. -
(FQP1) For families { 0 } and { T }, we have (£,(0),
f(T)eés. Hence (0, )¢ & Similarly, (1, 0)e 8.
(FQP2) For any A, u, v&F, we will show that
(AVp, we é iff (A, wed and (p, we d.

If (A4, W) d and (p, we 8. there are finite families
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{4 A=V AL (| =V w)
{pl ’ P=\/PI} aﬂd {,ulm 1 ,U=\/‘u,'m}

satisfying the following conditions: for each j, k, there
exists ix &I such that

F ). FutoNe 8,

and for each [, m, there exists i,,=I such that

POy Fi (I)E 8,

So, there exist finite families
(A o | AV p=(V )V (V p)lh,
{.uk/\#'m | ,u =\/k,m (,uk/\ ,U',,,)}.

For each A;and g A 1, there exists iz & I"such that,
by Remark 1 (1),

(ﬁjk(jy)’ ﬁjk(,uk)))e 6{,‘/( = (ﬁ,‘,\(ﬂff)’ .ﬁjk(uk/\ /'l,m))e 5111\
For each p, and p, A i, there exists i,, < I such that

(ﬁlm(p’)’ ﬁlm(lu,m))e 5i[771:> (ﬁlrn(p/)’ j;lm(:l‘l/\'/\:Ll’"l))E 6irn/'

Hence we have (AVp, e od.

If (AV p, w)¢ &, then there exist finite families () |
AVp=V 5L o) and {ig | u=V L 1) satisfying the
following condition: for any @, . there exists i, EI"
such that (ﬁjk(a?f)’ ﬁ/k('u"'))e 6%'/‘k'

Since A=(AVp)AA, we have

AVPIANL=V L (V).
Since fi (@A D =f, (@), by Remark 1 (1),
(il @), fi()E 8, = (i (N, fi(W)E S, .

Thus, there exist finite families {@ A A | A=V 2, (@
VA and (g | u=V,L, ) satisfying the following
condition: for any @A A, . there exists i, & I"such that
(ﬁjk(a(;j/\l), fi ()€ &;,. Hence (4, e 6. Similarly, (p,
HE o.

By a similar method, we can prove
(u, Avped iff (u, Aed and (1, p)eé.

(FQP3) We will show that if A % T — g, then (4, 1)
€6.

If A< T — p, then, for every finite families {4, |
A= V A} and {g | p=V ), there exist jo, ko, X
such that

/ljo(xo) + Hio(X)>1.

It follows that, for all i<T,

f;(zj(l) (ﬁ(xo)) +ﬁ(,“[lq)) (f:(xo)) = Afi()(x()) + ,uk()(xo)>1 .

Since for each i €T, & is a fuzzy quasi-proximity on
X,, by (FQP3), we have (f{4), fitt,)) € 6. Hence (4,
WES.

Second, if (f(A), fi(1))¢ & for each i< T, for families
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{A} and {u}, we have (A, ) 8. Hence for each i€T,
fir X, (X, 6) is a P-map.

Finally, if f; : (X, 6)—(X,, &) is a P-map, then we
will show that for all A, uEr,

(A ed = (4 wed.

If for any A, uEF, (A, we é, then there are finite
families (A4 | A=V 2, A} and {w& | p=V & w}
satisfying the following condition: for each j, k, there
exists &1 such that

(ﬁ,‘k(zj)’ ﬁjk(.uk)))e—: 51'jk-

Since f; : (X, §)—(X,, 8) is a P-map for every i< 1T,
then (A, w)¢ §. For fixed k, by (FQP2), (4, u)e §.
Again, by (FQP2), (A, e d.

(2) Necessity of the composition condition is clear
since the composition of P-maps is a P-map.

Conversely, if ({A), fiu))e d, then there are finite
families {p, | fAV= V[, p} and {n | A=V L ni}
satisfying the followings: for any j, k, there exists an iy
&I such that

(.0 fo,(M))e Oy

On the other hand, since f; f is a P-map,
(" Gl iy 1 (i (mae 8.

For any j, k, by Lemma 2.2(2), since
FUYEF UG G,

LMY (o,

we have, by Remark 1(1),

(fAl(Pj), Fim)e o.
For fixed &, by (FQP2) and Lemma 2.2 (5),

(\/,’:)1 f’I(Pj)’ ') = (f-l(\/jzl o) Fimne d.

Since A<f'(fiAN="V L, f{(p), by Remark 1(1), we
have

A fin))ed.
Again, by (FQP2), (4, we &. ]

Theorem 3.3 [11] (Existence of initial fuzzy closure
structure) Let {(X,, C) | i€} be a family of fuzzy
closure spaces. Let X be a set and, for each i<T, f; :
X—X; a function. The structure C on X is defined by

CA =NV (Nier FHCHFOINY,

where the first /\ is taken for every finite families
{}7 I A=V/Z| )7}

Then:

(1) C is the initial structure on X which for each i
T, f is a C-map.

) Amapf: (Y, Cy=>(X,C)isaC-mapiff fi-f: (¥,
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CH—(X;,, C) is a C-map for each i<T.

Theorem 34 Let ((X,, 8) | iST} be a family of
fuzzy quasi-proximity spaces. Let f; : X—X, be a
function for each i< I Let 8 is the initial fuzzy quasi-
proximity on X for which each f; is a P-map. Then:

(1) Cs=C where C is the initial fuzzy closure
operator on X for which each f; : (X, O)=(X, Cg) is a
C-map.

(2) Tes= T, where T is the initial fuzzy topology on
X for which each f: (X, T)—(X, T;5) is fuzzy
continuous.

Proof. (1) Since f;: (X, —(X,, §) is a P-map for
i€T, by Theorem 2.12, then f; : (X, Cs)—(X., Cg) is
a C-map. Therefore, by Theorem 3.3, the identity
function idy : (X, C5)—(X, C) is a C-map. Hence we
have C{A)<CA) for A€,

We will show that C(A)<C4A) for ASIX.

By Cs of Theorem 2.9, we have

CH=A{T = p|(p Lgd}.

For (p, A)¢ &, there are finite families {p, |p=V L, pi}
and {4 | A=V [, A} satisfying the following conditions:
for all %, j. there exists 7, I" such that

(i (o). fuf e 5,-‘],,

Hence

Co,( il N=T = fi(po.

For fixed j, we have
/\i&. l"f-iI (Cl(ﬁ(}’/)))< /\ k (Cﬁk(ﬁk (l)))
<AL ,f y (1 ~fii(po) (by (1)
—/\kql T f ikj (fu\}(pk))
(by Lemma 2.2(3))
<SALT =-p)
(by Lemma 2.2(2))

(1)

I -p
It follows, by the definition of C from Theorem 3.3,
CA =NV (N or FHCHERIMNY
SALVICT = p))

I -p

where the first /\ is taken for every finite families {4,

| j=1,--, p} such that A=V £, A. Hence C{A)< CsA).

(2) It is easily proved by (1), Theorem 2.12(3) and

Theorem 2.6.

Theorem 3.5 Let & be a fuzzy quasi-proximity on
X. Let 8" be the initial structure on X for which two
identity maps idy : (X, 6 ) —(X, &) and idy : (X, ")
(X, &'y are P-maps. Then & is a fuzzy proximity on X.

Proof. From Theorem 3.2, we only show that
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(A, wed” iff (u, Hed".

Since (A, we 8", there exist finite families {4, | A=
V2 AYand {g | u=V 2 w) satisfying the following
condition: for any A, g, there exists 6, {4, &'} such
that (4. pye ;. Since (A, pog 8 iff (4, A)e 8i' and
8 €16, &'}, we have (u, e d".

Conversely, we similarly prove it. O
Example 1. Let y; and i, be nonempty fuzzy sets
of /K. Define § and & on X as follows:

if A=0 or u=0,

(A i)e 51{ -
ifAST—p, u<u,.

and

it A=0or u=0,

(Auyeé {
if AST =gy, U<,

Then &, and &, are fuzzy quasi-proximities on X
(ref.{10]).

From Theorem 3.2, we can obtain the coarsest fuzzy
quasi-proximity & finer than &, and &, as follows:

(Case DIFA<(l —pupV{ =), =< Ath, then
there exist families {ANA(1 — ), AAN(I — ) | A =
(/1/\(1 —/,11))\/(/1/\(1 — )} and {u} such that

AN — ), wed and AAT - ), We &

Hence(A, we 6.

(Case ) IfF A £ (1 =)V = 1), 0=, A by,
for every finite families {4, | A= V2, 4} and {g |
u=Vi wu),since V2, /l:;(_(l -, V(1 — 1), there
exist 4, and xEX such that

A>(1 = )@V = th)(x).

For A; and g, # 0, since A (1 —py) and A4, ¥ a -
i), we have (4, )< 6, for i =1, 2. Hence (4, )< 4.

(Case 3) If A<(l —u])\/(] - ), A a - ), A
£ (1 — ) and p £ A 1, for every finite families
{4 1 ).=\/,-£| A} and {u | u=V< ), since V
oy W E A L, there exist 4, and x€X such that

Hlx) > ()N ().

Without loss of generality, we may assume that
W) > t(x). Then, since V2, L £ [ -, there
exist A; and x, X such that

Ay > (1 = o))

For A and p,, since A4;%£ (T — ) and p, £ w, we
have (A, )< 6 and (A, 1)<, respectively. Hence
(4, ES.
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(Case 4) IFA<(T — ), A% (1 — ) and U<y, u
¥ w, for every finite families {4, | A=V 2, 4} and
{ulpu =V w}, since VL, A$ (a —/lz) there
exists A, such that A, £ a — 1t). Since V2, W+,
there exists f; such that (% p,.

For A, and g, we have (A, p) €6 for i=1, 2.
Hence(4, (E6.

By a similar way, we obtain

if =0 or u=0,

if 0 A<T (U, Apy), O S AL,
(A e &if AsT-u,, usy,,

if A<T-py, pspy,
ifAST—(u,viy), usu, v i,

We obtain fuzzy closure operators Cs, and Cy, from
Theorem 2.9 as follows:

0,if A=0,
C51(1)= iy, if 0=A<py,,
1 otherwise.
and

0, if A=0,
Csz(/l) =y, if 0= A,

1 otherwise.

Furthermore, we obtain fuzzy topological spaces
from Theorem 2.6 as follows:
Te={0, T T~ ), Toe={0, T T - o ).

We can obtain the coarsest C finer than Cj and Cj,
from Theorem 3.3 (ref.[10]) as follows:

0, if 1=0,

Uy Ay, iE0£AS L ALy,

My, i ASpy, AL,

Hs if A<py, A< 1y,

MV b, iEAS Yy, ALy, A4,

C(A) =

1 otherwise.

Hence we easily show Cs= C. Furthermore, since
Tc—{NO, , -, - oy, i- WV i),
1- (4ul Alb)},

we have Tg;=Tc.

Example 2. Define a fuzzy quasi-proximity & on
X as follows:

(o 5{ifi(~)0r,l.1=(~),
Ae i
if A<T-p,, uspy,.

Then we obtain a fuzzy quasi-proximity 6-' on X as
follows:
if A=0 or u=0,
(Ape 5! -
if A<y, u<i-p,.

We can obtain the coarsest fuzzy proximity §” finer
than § and &' from Example 1 on putting th= T-p,
as follows:

if A=0 or u=0,
fASA-p) vy, g a(l-u)
if A<T—py, pspy,

if A<y, psl-py,

(Awed

if AS(T—p) Ay, pS(T-p)vi,.

Similarly, we obtain C, ¢, Cs+=C and Tep=Tc.

Theorem 3.6 Let (X, §) and (¥, &) be fuzzy
quasi-proximity spaces. If f: (X, §)—(¥, &) is a P-
map, then:

MO f:&X &H— (¥ &Y is a P-map.

) f: (X, 6" — (¥, &) is a P-map where each i = 1,
2, & is defined as Theorem 3.5.

Proof. (1) It is proved from the followings:
V(A WES! = (u, HES,
= (W, ANES
(since f is a P-map)
= (A, fuNEs’.

(2) If (A, we 6", there exist finite families {4, | A=
VI Atand (i | u=V &, 1} satisfying the following
condition: for any A, g, there exists &§, (6, &1}
such that (4;, u)e g,

Without loss of generality, we may assume that (4;
u)e &' for a fixed j, k. Since f: (X, &)Y, &) is
a P-map, we have

1A, [ e &

Hence there exist finite families

') | D=V L (A}
and

' | =V & o}
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satisfying the following condition: for any f-'(4). /™!
(1), there exists 8, {8, &'} such that (f'(4), [
(e 6. Therefore

(A, flue s’ O

From Theorem 3.2, we can define subspaces and
products in the obvious way.

Definition 3.7 Let (X, 6 be a fuzzy quasi-
proximityand A be a subset of X. The pair (A. 8,) is
said to be a subspace of (X, ) if it is endowed with the
initial fuzzy quasi-proximity structure with respect to
the inclusion map.

Definition 3.8 Let X be the product I« X; of the
family {(X, &) | i€I) of fuzzy quasi-proximity
spaces. An initial fuzzy quasi-proximity structure 6=
®46; on X with respect to all the projections 7; : X—X,
is called the product fuzzy quasi-proximity structure of
{8 | i€T}, and (X, ®8) is called the product fuzzy
quasi-proximity space.

Let {& |iEI} be a family of fuzzy quasi-
proximities on X. From Theorem 3.2, there exists an
initial fuzzy quasi-proximity structure & on X with
respect to all identity function idy : X—(X, 6). We
obtain the following corollary to coincide with
Theorem 4.1.3 of [9].

Corollary 3.9 Let {§ | i< T be a family of fuzzy
quasi-proximities on X. Define a binary relation §C X
X X on X by (4, e §iff there exist finite families {A,

| A=V /[ A4} and (i | u=V 2L ) satisfying the
following condition: for any A, . there exists iy & I
such that (4, W)€ §,.
Then & is the coarsest quasi-proximity on X for

which each quasi-proximity is finer than &.

Using Theorem 3.2 and Theorem 3.4, we have the
following corollary.

Corollary 3.10 Let {(X,, &) | i€I'} bea family
of fuzzy quasi-proximity spaces. Let (X, ®§) bea
product fuzzy quasi-proximity space. Then Cgs=®Cs.
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