Initial fuzzy quasi-proximities

Yong Chan Kim and Jin Won Park*

Department of Mathematics, Kangnung National University *Department of Mathematics Education, Cheju National University

ABSTRACT

We prove the existence of initial fuzzy quasi-proximity spaces. We study the relationship between the initial structure of the fuzzy closure spaces and that of fuzzy quasi-proximity spaces. We give some examples of those.

1. Introduction

A.S. Mashhour and M.H. Ghanim [14] introduced fuzzy closure spaces as a generalization of closure spaces. In [10], it was introduced afuzzy quasi-proximity space in a sense of [4]. It is weaker than the definitions of A.K. Katsaras and C.G. Petalas [8] and others [5,7,9]. In [8], it was proved the existence of initial fuzzy proximity spaces in a view of topogenous order. We reprove it with respect to the relation of fuzzy quasi-proximity in our sense. Furthermore, M. Khare [9] prove the existence of the coarsest proximity on X for which each proximity is finer than every given proximities on X. The existence of our sense is more general than it of [9]. In particular, we study the relationship between the initial structure of the fuzzy closure spaces and that of fuzzy quasi-proximity spaces. We give some examples of those.

2. Preliminaries

Throughout this paper, I denote the unit interval. A member μ of I^X is called a fuzzy set. $\tilde{0}$ and $\tilde{1}$ denote constant fuzzy sets taking the values 0 and 1 on X, respectively. For λ , $\mu \in I^X$, the fuzzy set λ is quasicoincident with μ , denoted by $\lambda q \mu$, if there exists x $\subseteq X$ such that $\lambda(x) + \mu(x) > 1$. If λ is not quasicoincident with μ , we denote $\lambda \overline{q} \mu$. Let $f: X \rightarrow Y$ be a function, $\mu \in I^X$ and $\nu \in I^Y$. We define:

$$f(\mu)(y) = \begin{cases} \sup\{\mu(x)|x \in f^{-1}(\{y\})\}, & \text{if } f^{-1}(\{y\}) \neq 0, \\ 0, & \text{if } f^{-1}(\{y\}) = 0. \end{cases}$$

and $f^{-1}(v)(x) = v(f(x))$.

Lemma 2.1 [4,11] For λ , μ , $\mu_i \in I^X$, we have the following properties.

- (1) If $\lambda q \mu$, then $\lambda \wedge \mu \neq 0$.
- (2) $\lambda = \mu$ iff $\lambda \leq \tilde{1} \mu$.

(3) $x_i q \bigvee_{i \in \Gamma} \mu_i$ iff there exists $i_0 \in \Gamma$ such that $x_i q \mu_{i_0}$. (4) If $f: X \rightarrow Y$ is a function and $\lambda q \mu$, then $f(\lambda) q f(\mu)$.

Lemma 2.2 [11,12] If $f: X \rightarrow Y$, then we have the following properties for direct and inverse image of fuzzy sets under mappings: for $v, v_i \in I^Y$ and $\mu, \mu_i \in I^X$,

- (1) $v \ge f(f^{-1}(v))$ with equality if f is surjective.
- (2) $\mu \le f^{-1}(f(\mu))$ with equality if f is injective,
- (3) $f^{-1}(\tilde{1} v) = \tilde{1} f^{-1}(v),$
- (4) $f(\hat{1} \mu) = \hat{1} f(\mu)$ if f is bijective, (5) $f^{-1}(\bigvee_{i \in \Gamma} V_i) = \bigvee_{i \in \Gamma} f^{-1}(V_i)$,
- (6) $f^{-1}(\bigwedge_{i\in\Gamma}v_i)=\bigwedge_{i\in\Gamma}f^{-1}(v_i),$
- (7) $f(\bigvee_{i\in\Gamma}\mu_i) = \bigvee_{i\in\Gamma} f(\mu_i)$,
- (8) $f(\bigwedge_{i \in \Gamma} \mu_i) \le \bigwedge_{i \in \Gamma} f(\mu_i)$ with equality if f is injective.

Definition 2.3 [2] A subset \mathcal{T} of I^X is called a *fuzzy* topology on X if it satisfies the following conditions:

- (O1) $\tilde{0}$, $\tilde{1} \in \mathcal{T}$.
- (O2) If μ_1 , $\mu_2 \in \mathcal{T}$, then $\mu_1 \wedge \mu_2 \in \mathcal{T}$.
- (O3) If $\mu_i \in \mathcal{T}$ for each $i \in \Gamma$, then $\bigvee_{i \in \Gamma} \mu_i \in \mathcal{T}$

The pair (X, T) is called a fuzzy topological space.

Let (X, \mathcal{T}_1) , (Y, \mathcal{T}_2) be fuzzy topological spaces. A function $f: (X, \mathcal{T}_1) \rightarrow (Y, \mathcal{T}_2)$ is called *fuzzy continuous* if $f^{-1}(\mu) \in \mathcal{T}_1$, for all $\mu \in \mathcal{T}_2$.

Definition 2.4 [14] A function $C: I^X \rightarrow I^X$ is called a fuzzy closure operator on X if it satisfies the following conditions:

- (C1) $C(\tilde{0}) = \tilde{0}$.
- (C2) $C(\lambda) \ge \lambda$, for all $\lambda \in I^X$.
- (C3) $C(\lambda \vee \mu) = C(\lambda) \vee C(\mu)$, for all λ , $\mu \in I^X$. The pair (X, C) is called a fuzzy closure space.

A fuzzy closure space (X, C) is called *topological* provided that

(C4) $C(C(\lambda)) = C(\lambda)$, for all $\lambda \in I^X$.

Let (X, C_1) and (Y, C_2) be fuzzy closure spaces. A function $f: (X, C_1) \rightarrow (Y, C_2)$ is called a fuzzy closure map (for short C-map) if for all $\lambda \in I^X$, $f(C_1(\lambda)) \le C_2(f(\lambda))$.

Theorem 2.5 [11,12] Let (X, \mathcal{T}) be a fuzzy topological space. We define an operator $C_{\mathcal{T}}: I^{X_{\longrightarrow}}I^{X}$ as follows: for each $\lambda \in I^{X'}$

$$C_{\sigma}(\lambda) = \bigwedge \{ \mu \mid \mu \geq \lambda, \ \widetilde{1} - \mu \in \mathcal{T} \}.$$

Then (X, C_{τ}) is a topological fuzzy closure space.

Theorem 2.6 [11,12] Let (X, C) be a fuzzy closure space. Define \mathcal{T}_C on X by

$$T_C = \{ \tilde{1} - \lambda \mid C(\lambda) = \lambda \}.$$

Then:

- (1) \mathcal{T}_C is a fuzzy topology on X.
- (2) $C = C_{\tau_C}$ iff (X, C) is topological.

Theorem 2.7 [11] Let (X, \mathcal{T}) be a fuzzy topological space. Then $T_{C_{\mathcal{T}}} = \mathcal{T}$

Definition 2.8 [4,10] A binary relation δ on I^X is said to be a fuzzy quasi-proximity on X which satisfies the following conditions: for λ , μ , $\rho \in I^X$,

(FQP1) ($\tilde{1}$, $\tilde{0}$) $\notin \delta$ and ($\tilde{1}$, $\tilde{0}$) $\notin \delta$.

(FQP2) $(\lambda \lor \rho, \mu) \in \delta$ iff $(\lambda, \mu) \in \delta$ or $(\rho, \mu) \in \delta$ and $(\mu, \lambda \lor \rho) \in \delta$ iff $(\mu, \lambda) \in \delta$ or $(\mu, \rho) \in \delta$. (FQP3) If $(\lambda, \mu) \notin \delta$, then $\lambda = \frac{1}{q} \mu$.

The pair (X, δ) is called a *fuzzy quasi-proximity* space.

A fuzzy quasi-proximity space (X, δ) is called a fuzzy proximity space if it satisfies:

(FP) If $(\lambda, \mu) \in \delta$ for $\lambda, \mu \in I^X$, then $(\mu, \lambda) \in \delta$. Let δ_1 and δ_2 be fuzzy quasi-proximities on X. We say δ_2 is *finer* than δ_1 (δ_1 is *coarser* than δ_2) if $(\lambda, \mu) \in \delta_2$ implies $(\lambda, \mu) \in \delta_1$.

Remark 1. Let (X, δ) be a fuzzy quasi-proximity space.

- (1) If $(\lambda, \nu) \notin \delta$ and $\rho \leq \lambda$, then, by (FQP2), we have $(\rho, \nu) \notin \delta$.
- (2) We define a binary relation δ^{-1} on I^X if for any λ , $\mu \in I^X$,

$$(\lambda, \mu) \in \delta^{-1}$$
 iff $(\mu, \lambda) \in \delta$.

Then (X, δ^{-1}) be a fuzzy quasi-proximity space.

Theorem 2.9 [4] Let (X, δ) be a fuzzy quasi-proximity space. For each $\lambda \subseteq I^X$, we define operator $C_\delta: I^X \rightarrow I^X$ as follows:

$$C_{\delta}(\lambda) = \bigwedge \{ \tilde{1} - \rho \mid (\rho, \lambda) \notin \delta \}.$$

Then (X, C_{δ}) is a fuzzy closure space.

Theorem 2.10 [10] Let (X, C) be a fuzzy closure space. We define a binary relation δ_C on I^X as follows: for λ , $\mu \in I^X$

 $(\lambda, \mu) \notin \delta_C \text{ iff } \lambda \overline{q} C(\mu).$

Then:

- (1) $C_{\delta C} = C$.
- (2) For any fuzzy quasi-proximity δ on X, $\delta_{C\delta}$ is finer than δ

Corollary 2.11 Let (X, \mathcal{T}) be a fuzzy topological space. Then $\mathcal{T}_{\delta C_r} = \mathcal{T}$.

Let (X, δ_1) and (Y, δ_2) be fuzzy quasi-proximity spaces. A function $f: (X, \delta_1) \rightarrow (Y, \delta_2)$ is a *fuzzy quasi-proximity map* (for short, P-map) if for each $(\mu, \nu) \in \delta_1$, we have $(f(\mu), f(\nu)) \in \delta_2$, equivalently, $(\rho, \eta) \notin \delta_2$, we have $(f^{-1}(\rho), f^{-1}(\eta)) \notin \delta_1$.

Theorem 2.12 [4,10] Let (X, δ_1) and (Y, δ_2) be fuzzy quasi-proximity spaces.

- If $f: (X, \delta_1) \rightarrow (Y, \delta_2)$ is a P-map, then:
- (1) $f: (X, C_{\delta_1}) \rightarrow (Y, C_{\delta_2})$ is a C-map.
- (2) $C_{\delta_1}(f^{-1}(\mu))) \leq f^{-1}(C_{\delta_2}(\mu))$, for each $\mu \in I^Y$.
- $(3) f: (X, \mathcal{T}_{C\delta_1}) \rightarrow (Y, \mathcal{T}_{C\delta_2})$ is a fuzzy continuous map.

3. Initial fuzzy quasi-proximities

Definition 3.1 Let $(X_i, \delta_i)_{i \in \Gamma}$ be a family of fuzzy quasi-proximity spaces. Let X be a set and, for each $i \in \Gamma$, $f_i \colon X \to X_i$ a function. The initial structure δ is the coarsest fuzzy quasi-proximity on X for which each f_i is a P-map.

Theorem 3.2 (Existence of initial structure) Let $\{(X_i, \delta_i) \mid i \in \Gamma\}$ be a family of fuzzy quasi-proximity spaces. Let X be a set and, for each $i \in \Gamma$, $f_i : X \to X_i$ a mapping. Define a binary relation $\delta \subset I^X \times I^X$ on X by $(\lambda, \mu) \notin \delta$ iff there exist finite families $\{\lambda_j \mid \lambda = \bigvee_{j=1}^p \lambda_j\}$ and $\{\mu_k \mid \mu = \bigvee_{k=1}^q \mu_k\}$ satisfying the following condition: for any λ_j , μ_k , there exists $i_{jk} \in \Gamma$ such that $(f_{i_{jk}}(\lambda_j), f_{i_{jk}}(\mu_k)) \notin \delta_{i_{jk}}$. Then:

- (1) δ is the initial structure on X.
- (2) A map $f: (Y, \delta') \rightarrow (X, \delta)$ is a P-map iff $f_i \circ f \rightarrow (Y, \delta) \rightarrow (X_i, \delta_i)$ is a P-map for each $i \in \Gamma$.

Proof. (1) First, we will show that δ is a fuzzy quasi-proximity on X.

(FQP1) For families $\{\tilde{0}\}\$ and $\{\tilde{1}\}\$, we have $(f_i(\tilde{0}), f_i(\tilde{1})) \notin \delta$. Hence $(\tilde{0}, \tilde{1}) \notin \delta$. Similarly, $(\tilde{1}, \tilde{0}) \notin \delta$. (FQP2) For any λ , μ , $\nu \in I^X$, we will show that $(\lambda \lor \rho, \mu) \notin \delta$ iff $(\lambda, \mu) \notin \delta$ and $(\rho, \mu) \notin \delta$.

If $(\lambda, \mu) \notin \delta$ and $(\rho, \mu) \notin \delta$, there are finite families

$$\{\lambda_j \mid \lambda = \bigvee \lambda_j\}, \{\mu_k \mid \mu = \bigvee \mu_k\}$$

 $\{\rho_i \mid \rho = \bigvee \rho_i\} \text{ and } \{\mu'_m \mid \mu = \bigvee \mu'_m\}$

satisfying the following conditions: for each j, k, there exists $i_k \in \Gamma$ such that

$$(f_{iik}(\lambda_i), f_{iik}(\mu_k))) \notin \delta_{iik}$$

and for each l, m, there exists $i_{lm} \in \Gamma$ such that

$$(f_{il_m}(\rho_l), f_{il_m}(\mu'_m))) \notin \delta_{il_m}$$

So, there exist finite families

$$\{\lambda_{j}, \rho_{l} \mid \lambda \vee \rho = (\vee \lambda_{j}) \vee (\vee \rho_{l})\}, \{\mu_{k} \wedge \mu'_{m} \mid \mu = \vee_{k,m} (\mu_{k} \wedge \mu'_{m})\}.$$

For each λ_j and $\mu_k \wedge \mu'_m$, there exists $i_{jk} \in \Gamma$ such that, by Remark 1 (1),

$$(f_{ijk}(\lambda_j), f_{ijk}(\mu_k))) \notin \delta_{ijk} \Rightarrow (f_{ijk}(\lambda_j), f_{ijk}(\mu_k \wedge \mu'_m)) \notin \delta_{ijk}.$$

For each ρ_l and $\mu_k \wedge \mu'_m$, there exists $i_{lm} \in \Gamma$ such that

$$(f_{ilm}(\rho_l), f_{ilm}(\mu'_m)) \notin \delta_{ilm} \Rightarrow (f_{ilm}(\rho_l), f_{ilm}(\mu_k \wedge \mu'_m)) \notin \delta_{iml}$$

Hence we have $(\lambda \vee \rho, \mu) \notin \delta$.

If $(\lambda \lor \rho, \mu) \notin \delta$, then there exist finite families $\{\omega_j \mid \lambda \lor \rho = \bigvee_{j=1}^p \omega_j\}$ and $\{\mu_k \mid \mu = \bigvee_{k=1}^q \mu_k\}$ satisfying the following condition: for any ω_j , μ_k , there exists $i_{jk} \in \Gamma$ such that $(f_{i_{ik}}(\omega_j), f_{i_{ik}}(\mu_k)) \notin \delta_{i_{ik}}$.

Since $\lambda = (\lambda \vee \rho) \wedge \lambda$, we have

$$(\lambda \vee \rho) \wedge \lambda = \bigvee_{i=1}^{p} (\omega_i \vee \lambda).$$

Since $f_{ii}(\omega_i \wedge \lambda) \leq f_{ii}(\omega_i)$, by Remark 1 (1),

$$(f_{ik}(\omega_j), f_{ik}(\mu_k)) \notin \delta_{ik} \Rightarrow (f_{ik}(\omega_j \wedge \lambda), f_{ik}(\mu_k)) \notin \delta_{ik}.$$

Thus, there exist finite families $\{\omega_j \wedge \lambda \mid \lambda = \bigvee_{j=1}^{p} (\omega_j \vee \lambda) \text{ and } \{\mu_k \mid \mu = \bigvee_{k=1}^{q} \mu_k\} \text{ satisfying the following condition: for any } \omega_j \wedge \lambda, \mu_k, \text{ there exists } i_{jk} \subseteq \Gamma \text{ such that } (f_{ijk}(\omega_j \wedge \lambda), f_{ijk}(\mu_k)) \notin \delta_{ijk}. \text{ Hence } (\lambda, \mu) \notin \delta. \text{ Similarly, } (\rho, \mu) \notin \delta.$

By a similar method, we can prove

$$(\mu, \lambda \vee \rho) \notin \delta$$
 iff $(\mu, \lambda) \notin \delta$ and $(\mu, \rho) \notin \delta$.

(FQP3) We will show that if $\lambda \not \leq \tilde{1} - \mu$, then $(\lambda, \mu) \in \delta$

If $\lambda \not \leq \tilde{1} - \mu$, then, for every finite families $\{\lambda_j \mid \lambda = \bigvee \lambda_j\}$ and $\{\mu_k \mid \mu = \bigvee \mu_k\}$, there exist j_0, k_0, x_0 such that

$$\lambda_{i0}(x_0) + \mu_{k0}(x_0) > 1$$
.

It follows that, for all $i \in \Gamma$,

$$f_i(\lambda_{i_0}) (f_i(x_0)) + f_i(\mu_{k_0}) (f_i(x_0)) \ge \lambda_{i_0}(x_0) + \mu_{k_0}(x_0) > 1.$$

Since for each $i \in \Gamma$, δ_i is a fuzzy quasi-proximity on X_i , by (FQP3), we have $(f_i(\lambda_{j_0}), f_i(\mu_{k_0})) \in \delta_i$. Hence $(\lambda, \mu) \in \delta$.

Second, if $(f_i(\lambda), f_i(\mu)) \notin \delta_i$ for each $i \in \Gamma$, for families

 $\{\lambda\}$ and $\{\mu\}$, we have $(\lambda, \mu) \notin \delta$. Hence for each $i \in \Gamma$, $f_i : (X, \delta) \rightarrow (X_i, \delta)$ is a P-map.

Finally, if $f_i: (X, \delta') \rightarrow (X_i, \delta_i)$ is a P-map, then we will show that for all λ , $\mu \in I^X$,

$$(\lambda, \mu) \notin \delta \Rightarrow (\lambda, \mu) \notin \delta'.$$

If for any λ , $\mu \in I^{k}$, $(\lambda, \mu) \notin \delta$, then there are finite families $\{\lambda_{j} \mid \lambda = \bigvee_{j=1}^{p} \lambda_{j}\}$ and $\{\mu_{k} \mid \mu = \bigvee_{k=1}^{q} \mu_{k}\}$ satisfying the following condition: for each j, k, there exists $i_{jk} \in \Gamma$ such that

$$(f_{iik}(\lambda_i), f_{ijk}(\mu_k))) \notin \delta_{ijk}$$
.

Since $f_i: (X, \delta') \rightarrow (X_i, \delta_i)$ is a P-map for every $i \in \Gamma$, then $(\lambda_j, \mu_k) \notin \delta'$. For fixed k, by (FQP2), $(\lambda, \mu_k) \notin \delta'$. Again, by (FQP2), $(\lambda, \mu) \notin \delta'$.

(2) Necessity of the composition condition is clear since the composition of P-maps is a P-map.

Conversely, if $(f(\lambda), f(\mu)) \notin \delta$, then there are finite families $\{\rho_j \mid f(\lambda) = \bigvee_{j=1}^p \rho_j\}$ and $\{\eta_k \mid f(\mu) = \bigvee_{k=1}^q \eta_k\}$ satisfying the followings: for any j, k, there exists an $i_{jk} \in \Gamma$ such that

$$(f_{ijk}(\rho_j), f_{ijk}(\eta_k)) \notin \delta_{ijk}$$

On the other hand, since $f_i \circ f$ is a P-map,

$$((f_{ij_k} \circ f)^{-1} (f_{ij_k}(\rho_j)), (f_{ij_k} \circ f)^{-1} (f_{ij_k}(\eta_k))) \notin \delta'.$$

For any i, k, by Lemma 2.2(2), since

$$\begin{array}{l} f^{-1}(\rho_j) \leq f^{-1}((f_{ijk}^{-1}(f_{ijk}(\rho_j))), \\ f^{-1}(\eta_k) \leq f^{-1}((f_{ijk}^{-1}(f_{ijk}(\eta_k))), \end{array}$$

we have, by Remark 1(1),

$$(f^{-1}(\rho_i), f^{-1}(\eta_k)) \notin \delta'$$
.

For fixed k, by (FQP2) and Lemma 2.2 (5),

$$(\bigvee_{i=1}^{p} f^{-1}(\rho_i), f^{-1}(\eta_k)) = (f^{-1}(\bigvee_{i=1}^{p} \rho_i), f^{-1}(\eta_k)) \notin \delta'.$$

Since $\lambda \le f^{-1}(f(\lambda)) = \bigvee_{j=1}^{p} f^{-1}(\rho_j)$, by Remark 1(1), we have

$$(\lambda, f^1(\eta_k)) \notin \delta'$$
.

Again, by (FQP2),
$$(\lambda, \mu) \notin \delta'$$
.

Theorem 3.3 [11] (Existence of initial fuzzy closure structure) Let $\{(X_i, C_i) \mid i \in \Gamma\}$ be a family of fuzzy closure spaces. Let X be a set and, for each $i \in \Gamma$, $f_i : X \rightarrow X_i$ a function. The structure C on X is defined by

$$C(\lambda) = \bigwedge \{ \bigvee_{i=1}^{p} (\bigwedge_{i \in \Gamma} f^{-1}(C_{i}(f_{i}(\lambda_{i})))) \},$$

where the first \wedge is taken for every finite families $\{\lambda_j \mid \lambda = \bigvee_{j=1}^p \lambda_j\}$.

Then:

(1) C is the initial structure on X which for each $i \in \Gamma$, f_i is a C-map.

(2) A map $f: (Y, C') \rightarrow (X, C)$ is a C-map iff $f_i \circ f: (Y, C') \rightarrow (X, C)$

 $C' \rightarrow (X_i, C_i)$ is a C-map for each $i \in \Gamma$.

Theorem 3.4 Let $\{(X_i, \delta_i) \mid i \in \Gamma\}$ be a family of fuzzy quasi-proximity spaces. Let $f_i: X \rightarrow X_i$ be a function for each $i \in \Gamma$. Let δ is the initial fuzzy quasiproximity on X for which each f_i is a P-map. Then:

- (1) $C_{\delta} = C$ where C is the initial fuzzy closure operator on X for which each $f_i:(X,C)\rightarrow(X,C_{\delta i})$ is a
- (2) $\mathcal{T}_{C\delta} = \mathcal{T}_C$ where \mathcal{T}_C is the initial fuzzy topology on X for which each $f_i: (X, \mathcal{T}_C) \rightarrow (X, \mathcal{T}_{C\delta_i})$ is fuzzy continuous.

Proof. (1) Since $f_i: (X, \delta) \rightarrow (X_i, \delta_i)$ is a P-map for $i \in \Gamma$, by Theorem 2.12, then $f_i : (X, C_{\delta}) \rightarrow (X_i, C_{\delta_i})$ is a C-map. Therefore, by Theorem 3.3, the identity function $id_X: (X, C_\delta) \rightarrow (X, C)$ is a C-map. Hence we have $C_{\delta}(\lambda) \leq C(\lambda)$ for $\lambda \in I^X$.

We will show that $C(\lambda) \le C_{\delta}(\lambda)$ for $\lambda \in I^{X}$. By C_{δ} of Theorem 2.9, we have

$$C_{\delta}(\lambda) = \bigwedge \{ \widetilde{1} - \rho \mid (\rho, \lambda) \notin \delta \}.$$

For $(\rho, \lambda) \notin \delta$, there are finite families $\{\rho_k \mid \rho = \bigvee_{k=1}^q \rho_k\}$ and $\{\lambda_i \mid \lambda = \bigvee_{i=1}^{p} \lambda_i\}$ satisfying the following conditions: for all k, j, there exists $i_{kj} \in \Gamma$ such that

$$(f_{ikj}(\rho_k), f_{ikj}(\lambda_j)) \notin \delta_{ikj}$$

Hence

$$C_{\delta_{i,k}}(f_{i_{k}i}(\lambda_{j}))) \leq \tilde{1} - f_{i_{k}i}(\rho_{k}). \tag{1}$$

For fixed i, we have

It follows, by the definition of C from Theorem 3.3, $C(\lambda) = \bigwedge \{ \bigvee_{j=1}^{p} (\bigwedge_{i \in \Gamma} f_{i}^{-1}(C_{i}(f_{i}(\lambda_{j}))))) \}$ $\leq \bigwedge \{ \bigvee_{j=1}^{p} (\widetilde{1} - \rho) \}$ $= \widetilde{1} - \rho$

where the first \wedge is taken for every finite families $\{\lambda_i\}$ $|j=1,\dots,p|$ such that $\lambda = \bigvee_{j=1}^{p} \lambda_j$. Hence $C(\lambda) \leq C_{\delta}(\lambda)$. (2) It is easily proved by (1), Theorem 2.12(3) and Theorem 2.6.

Theorem 3.5 Let δ be a fuzzy quasi-proximity on X. Let δ^* be the initial structure on X for which two identity maps $id_X: (X, \delta^*) \rightarrow (X, \delta)$ and $id_X: (X, \delta^*) \rightarrow$ (X, δ^1) are P-maps. Then δ^* is a fuzzy proximity on X.

Proof. From Theorem 3.2, we only show that

 $(\lambda, \mu) \notin \delta^*$ iff $(\mu, \lambda) \notin \delta^*$.

Since $(\lambda, \mu) \notin \delta^*$, there exist finite families $\{\lambda_i \mid \lambda = 1\}$ $\bigvee_{i=1}^{p} \lambda_{i}$ and $\{\mu_{k} \mid \mu = \bigvee_{k=1}^{m} \mu_{k}\}$ satisfying the following condition: for any λ_i , μ_k , there exists $\delta_k \in \{\delta, \delta^1\}$ such that $(\lambda_i, \mu_k) \notin \delta_{ik}$. Since $(\lambda_i, \mu_k) \notin \delta_{ik}$ iff $(\mu_k, \lambda_i) \notin \delta_{ik}^{-1}$ and $\delta_k^{-1} \subseteq \{\delta, \delta^1\}$, we have $(\mu, \lambda) \notin \delta^*$.

Conversely, we similarly prove it.

Example 1. Let μ_1 and μ_2 be nonempty fuzzy sets of I^X . Define δ_1 and δ_2 on X as follows:

$$(\lambda, \mu) \notin \delta_1$$
 if $\lambda = \tilde{0}$ or $\mu = \tilde{0}$, if $\lambda \leq \tilde{1} - \mu_1, \mu \leq \mu_1$.

and

$$(\lambda, \mu) \notin \delta_2$$
 if $\lambda = \tilde{0}$ or $\mu = \tilde{0}$,
if $\lambda \leq \tilde{1} - \mu_2$, $\mu \leq \mu_2$.

Then δ_1 and δ_2 are fuzzy quasi-proximities on X (ref.[10]).

From Theorem 3.2, we can obtain the coarsest fuzzy quasi-proximity δ finer than δ_1 and δ_2 as follows:

(Case 1) If $\lambda \leq (\tilde{1} - \mu_1) \vee (\tilde{1} - \mu_2)$, $\mu \leq \mu_1 \wedge \mu_2$, then there exist families $\{\lambda \wedge (\tilde{1} - \mu_1), \lambda \wedge (\tilde{1} - \mu_2) \mid \lambda = 1\}$ $(\lambda \wedge (\tilde{1} - \mu_1)) \vee (\lambda \wedge (\tilde{1} - \mu_2))$ and $\{\mu\}$ such that

$$(\lambda \wedge (\widetilde{1} - \mu_1), \ \mu) \notin \delta_1 \text{ and } (\lambda \wedge (\widetilde{1} - \mu_2), \ \mu) \notin \delta_2.$$

Hence $(\lambda, \mu) \notin \delta$.

(Case 2) If $\lambda \not\leq (\tilde{1} - \mu_1) \vee (\tilde{1} - \mu_2)$, $0 \neq \mu \leq \mu_1 \wedge \mu_2$, for every finite families $\{\lambda_j \mid \lambda = \bigvee_{j=1}^p \lambda_j\}$ and $\{\mu_k \mid$ $\mu = \bigvee_{k=1}^{q} \mu_k$, since $\bigvee_{j=1}^{p} \lambda_j \nleq (\tilde{1} - \mu_1) \vee (\tilde{1} - \mu_2)$, there exist λ_i and $x \in X$ such that

$$\lambda_{j}(x) > (\widetilde{1} - \mu_{1})(x) \vee (\widetilde{1} - \mu_{2})(x).$$

For λ_i and $\mu_k \neq \tilde{0}$, since $\lambda_i \not\leq (\tilde{1} - \mu_1)$ and $\lambda_i \not\leq (\tilde{1} - \mu_2)$ μ_2), we have $(\lambda_j, \mu_k) \subseteq \delta_i$, for i = 1, 2. Hence $(\lambda, \mu) \subseteq \delta$. (Case 3) If $\lambda \leq (\tilde{1} - \mu_1) \vee (\tilde{1} - \mu_2)$, $\lambda \not\leq (\tilde{1} - \mu_1)$, λ $\not\leq (\tilde{1} - \mu_2)$ and $\mu \not\leq \mu_1 \wedge \mu_2$, for every finite families $\{\lambda_j \mid \lambda = \bigvee_{j=1}^p \lambda_j\}$ and $\{\mu \mid \mu = \bigvee_{k=1}^q \mu_k\}$, since \bigvee $\mu_{k=1}^{q} \mu_{k} \le \mu_{1} \land \mu_{2}$, there exist μ_{k} and $x \in X$ such that

$$\mu_k(x) > \mu_1(x) \wedge \mu_2(x).$$

Without loss of generality, we may assume that $\mu_k(x) > \mu_1(x)$. Then, since $\bigvee_{i=1}^p \lambda_i \nleq \tilde{1} - \mu_2$, there exist λ_i and $x_1 \subseteq X$ such that

$$\lambda_i(x_1) > (\widetilde{1} - \mu_2)(x_1).$$

For λ_i and μ_k , since $\lambda_i \not\leq (\tilde{1} - \mu_2)$ and $\mu_k \not\leq \mu_1$, we have $(\lambda_j, \mu_k) \subseteq \delta_1$ and $(\lambda_j, \mu_k) \subseteq \delta_2$, respectively. Hence $(\lambda, \mu) \subseteq \delta$.

(Case 4) If $\lambda \leq (\widetilde{1} - \mu_1)$, $\lambda \not\leq (\widetilde{1} - \mu_2)$ and $\mu \leq \mu_2$, $\mu \not\leq \mu_1$, for every finite families $\{\lambda_j \mid \lambda = \bigvee_{j=1}^p \lambda_j\}$ and $\{\mu \mid \mu = \bigvee_{k=1}^q \mu_k\}$, since $\bigvee_{j=1}^p \lambda_j \not\leq (\widetilde{1} - \mu_2)$, there exists λ_j such that $\lambda_j \not\leq (\widetilde{1} - \mu_2)$. Since $\bigvee_{k=1}^q \mu_k \not\leq \mu_1$, there exists μ_k such that $\mu_k \not\leq \mu_1$.

For λ_j and μ_k , we have $(\lambda_j, \mu_k) \subseteq \delta_i$ for i = 1, 2. Hence $(\lambda_i, \mu) \subseteq \delta$.

By a similar way, we obtain

$$(\lambda, \mu) \notin \delta \begin{cases} \text{if } \lambda = \tilde{0} \text{ or } \mu = \tilde{0}, \\ \text{if } \tilde{0} \neq \lambda \leq \tilde{1} - (\mu_1 \wedge \mu_2), \ \tilde{0} \neq \mu \leq \mu_1 \wedge \mu_2 \end{cases}$$

$$\text{if } \lambda \leq \tilde{1} - \mu_1, \ \mu \leq \mu_1, \\ \text{if } \lambda \leq \tilde{1} - \mu_2, \ \mu \leq \mu_2, \\ \text{if } \lambda \leq \tilde{1} - (\mu_1 \vee \mu_2), \ \mu \leq \mu_1 \vee \mu_2. \end{cases}$$

We obtain fuzzy closure operators C_{δ_1} and C_{δ_1} from Theorem 2.9 as follows:

$$C_{\delta_1}(\lambda) = \begin{cases} \tilde{0}, & \text{if } \lambda = \tilde{0}, \\ \mu_1, & \text{if } \tilde{0} \neq \lambda \leq \mu_1, \\ \tilde{1}, & \text{otherwise} \end{cases}$$

and

$$C_{\delta_2}(\lambda) = \begin{cases} \tilde{0}, & \text{if } \lambda = \tilde{0}, \\ \mu_2, & \text{if } \tilde{0} \neq \lambda \leq \mu_2, \\ \tilde{1}, & \text{otherwise.} \end{cases}$$

Furthermore, we obtain fuzzy topological spaces from Theorem 2.6 as follows:

$$\mathcal{T}_{C\delta_1} = \{ \ \widetilde{0}, \ \widetilde{1}, \ \widetilde{1} - \mu_1 \ \}, \ \mathcal{T}_{C\delta_2} = \{ \ \widetilde{0}, \ \widetilde{1}, \ \widetilde{1} - \mu_2 \ \}.$$

We can obtain the coarsest C finer than C_{δ_1} and C_{δ_2} from Theorem 3.3 (ref.[10]) as follows:

$$C(\lambda) = \begin{cases} \tilde{0}, & \text{if } \lambda = \tilde{0}, \\ \mu_1 \wedge \mu_2, & \text{if } \tilde{0} \neq \lambda \leq \mu_1 \wedge \mu_2, \\ \mu_1, & \text{if } \lambda \leq \mu_1, \lambda \nleq \mu_2, \\ \mu_2, & \text{if } \lambda \leq \mu_2, \lambda \nleq \mu_1, \\ \mu_1 \vee \mu_2, & \text{if } \lambda \leq \mu_1 \vee \mu_2, \lambda \nleq \mu_2, \lambda \nleq \mu_2, \\ \tilde{1} & \text{otherwise} \end{cases}$$

Hence we easily show $C_{\delta} = C$. Furthermore, since $\mathcal{T}_{C} = \{ \tilde{0}, \tilde{1}, \tilde{1} - \mu_{1}, \tilde{1} - \mu_{2}, \tilde{1} - (\mu_{1} \vee \mu_{2}), \tilde{1} - (\mu_{1} \wedge \mu_{2}) \},$

we have $T_{C\delta} = T_C$.

Example 2. Define a fuzzy quasi-proximity δ on X as follows:

$$(\lambda,\mu) \notin \delta$$
 if $\lambda = \tilde{0}$ or $\mu = \tilde{0}$, if $\lambda \leq \tilde{1} - \mu_1$, $\mu \leq \mu_1$.

Then we obtain a fuzzy quasi-proximity δ^{-1} on X as follows:

$$(\lambda, \mu) \notin \delta^{-1}$$
 if $\lambda = \tilde{0}$ or $\mu = \tilde{0}$, if $\lambda \leq \mu_1, \mu \leq \tilde{1} - \mu_1$.

We can obtain the coarsest fuzzy proximity δ^* finer than δ and δ^{-1} from Example 1 on putting $\mu_2 = \tilde{1} - \mu_1$ as follows:

$$(\lambda,\mu) \notin \delta \begin{cases} \text{if } \lambda = \tilde{0} \text{ or } \mu = \tilde{0}, \\ \text{if } \lambda \leq (\tilde{1} - \mu_1) \vee \mu_1, \ \mu \leq \mu_1 \wedge (\tilde{1} - \mu_1) \end{cases}$$

$$\text{if } \lambda \leq \tilde{1} - \mu_1, \ \mu \leq \mu_1, \\ \text{if } \lambda \leq \mu_1, \ \mu \leq \tilde{1} - \mu_1, \\ \text{if } \lambda \leq (\tilde{1} - \mu_1) \wedge \mu_1, \ \mu \leq (\tilde{1} - \mu_1) \vee \mu_1. \end{cases}$$

Similarly, we obtain C, \mathcal{T}_C , $C_{\delta^*} = C$ and $\mathcal{T}_{C\delta^*} = \mathcal{T}_C$.

Theorem 3.6 Let (X, δ_1) and (Y, δ_2) be fuzzy quasi-proximity spaces. If $f: (X, \delta_1) \rightarrow (Y, \delta_2)$ is a P-map, then:

(1) $f: (X, \delta_1^{-1}) \rightarrow (Y, \delta_2^{-1})$ is a P-map. (2) $f: (X, \delta_1^*) \rightarrow (Y, \delta_2^*)$ is a P-map where each i = 1, 2, δ_i^* is defined as Theorem 3.5.

Proof. (1) It is proved from the followings: $\forall (\lambda, \mu) \in \delta^{-1} \Rightarrow (\mu, \lambda) \in \delta$.

$$\forall (\lambda, \mu) \in \delta_1^{-1} \Rightarrow (\mu, \lambda) \in \delta_1$$

$$\Rightarrow (f(\mu), f(\lambda)) \in \delta_2$$
(since f is a P-map)
$$\Rightarrow (f(\lambda)), f(\mu)) \in \delta_2^{-1}.$$

(2) If $(\lambda, \mu) \notin \delta_2^*$, there exist finite families $\{\lambda_j \mid \lambda = \bigvee_{j=1}^p \lambda_j\}$ and $\{\mu_k \mid \mu = \bigvee_{k=1}^q \mu_k\}$ satisfying the following condition: for any λ_j , μ_k , there exists $\delta_{jk} \in \{\delta_2, \delta_2^{-1}\}$ such that $(\lambda_i, \mu_k) \notin \delta_{jk}$.

Without loss of generality, we may assume that $(\lambda_j, \mu_k) \notin \delta_2^{-1}$ for a fixed j, k. Since $f: (X, \delta_1^{-1}) \rightarrow (Y, \delta_2^{-1})$ is a P-map, we have

$$(f^{-1}(\lambda_i), f^{-1}(\mu_k)) \notin \delta_1^{-1}$$
.

Hence there exist finite families

$$\{f^{-1}(\lambda_i) \mid f^{-1}(\lambda) = \bigvee_{i=1}^p f^{-1}(\lambda_i)\}$$

and

$$\{f^{-1}(\mu_k) \mid f^{-1}(\mu) = \bigvee_{k=1}^{q} f^{-1}(\mu_k)\}$$

satisfying the following condition: for any $f^{-1}(\lambda_j)$, $f^{-1}(\mu_k)$, there exists $\delta_{jk} \in \{\delta_1, \delta_1^{-1}\}$ such that $(f^{-1}(\lambda_j), f^{-1}(\mu_k)) \notin \delta_{jk}$. Therefore

$$(f^{-1}(\lambda), f^{-1}(\mu)) \notin \delta_1^*.$$

From Theorem 3.2, we can define subspaces and products in the obvious way.

Definition 3.7 Let (X, δ) be a fuzzy quasi-proximity and A be a subset of X. The pair (A, δ_A) is said to be a *subspace* of (X, δ) if it is endowed with the initial fuzzy quasi-proximity structure with respect to the inclusion map.

Definition 3.8 Let X be the product $\Pi_{i \in \Gamma} X_i$ of the family $\{(X_i, \delta_i) \mid i \in \Gamma\}$ of fuzzy quasi-proximity spaces. An initial fuzzy quasi-proximity structure $\delta = \bigotimes \delta_i$ on X with respect to all the projections $\pi_i : X \rightarrow X_i$ is called the *product fuzzy quasi-proximity structure* of $\{\delta_i \mid i \in \Gamma\}$, and $(X, \bigotimes \delta_i)$ is called the *product fuzzy quasi-proximity space*.

Let $\{\delta_i \mid i \in \Gamma\}$ be a family of fuzzy quasi-proximities on X. From Theorem 3.2, there exists an initial fuzzy quasi-proximity structure δ on X with respect to all identity function $id_X : X \rightarrow (X, \delta_i)$. We obtain the following corollary to coincide with Theorem 4.1.3 of [9].

Corollary 3.9 Let $\{\delta_i \mid i \in \Gamma\}$ be a family of fuzzy quasi-proximities on X. Define a binary relation $\delta \subset I^X$ $\times I^X$ on X by $(\lambda, \mu) \notin \delta$ iff there exist finite families $\{\lambda_j \mid \lambda = \bigvee_{j=1}^p \lambda_j\}$ and $\{\mu_k \mid \mu = \bigvee_{k=1}^q \mu_k\}$ satisfying the following condition: for any λ_j , μ_k , there exists $i_{jk} \in \Gamma$ such that $(\lambda_j, \mu_k) \notin \delta_{ii}$.

Then δ is the coarsest quasi-proximity on X for which each quasi-proximity is finer than δ .

Using Theorem 3.2 and Theorem 3.4, we have the following corollary.

Corollary 3.10 Let $\{(X_i, \delta_i) \mid i \in \Gamma\}$ be a family of fuzzy quasi-proximity spaces. Let $(X, \otimes \delta_i)$ bea product fuzzy quasi-proximity space. Then $C_{\otimes \delta_i} = \otimes C_{\delta_i}$.

References

- J. Adamek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, John Wiley and Sons, Inc., 1990
- [2] C. L. Chang, "Fuzzy topological spaces", J. Math. Anal. Appl., 24, 182-190, 1968.
- [3] M. H. Ghanim and Fatma S. Al-Sirehy, "Topological

- modification of fuzzy closure spaces", Fuzzy sets and Systems, 27, 211-215, 1987.
- [4] A. Kandil and M. E. El-Shafee, "Regularity axioms in fuzzy topological spaces", Fuzzy sets and Systems, 27, 217-231, 1988.
- [5] A. K. Katsaras, "On fuzzy proximity spaces", J. Math. Anal. Appl., 75, 571-583, 1980.
- [6] A. K. Katsaras, "Operations on fuzzy syntopogenous structures", Fuzzy sets and Systems, 43, 199-217, 1991.
- [7] A. K. Katsaras, "Fuzzy quasi-proximities and fuzzy quasi-uniformities", Fuzzy sets and Systems, 27, 335-343, 1988
- [8] A. K. Katsaras and C. G. Petalas, "On fuzzy syntopogenous structures", J. Math. Anal. Appl., 99(1), 219-236, 1984.
- [9] M. Khare, "A relationship between classical and fuzzy proximities", Fuzzy sets and Systems, 90, 55-59, 1997.
- [10] Y. C. Kim and J. W. Lee, "Fuzzy fuzzy closure spaces and fuzzy quasi-proximity spaces", *Journal of Fuzzy Logic and Intelligent Systems*, 9(5), 550-554, 1999.
- [11] Y. C. Kim and S. H. Lee, "Some properties of fuzzy closure spaces", Journal of Fuzzy Logic and Intelligent Systems, 9(4), 404-410, 1999.
- [12] Liu Ying-Ming and Luo Mao-Kang, Fuzzy topology, World Scientific Publishing, 1997.
- [13] R. Lowen, "Initial and final topologies and fuzzy Tychonoff theorem", J. Math. Anal. Appl., 58, 11-21, 1977.
- [14] A. S. Mashhour and M. H. Ghanim, "Fuzzy closure spaces", J. Math. Anal. Appl., 106, 154-170, 1985.
- [15] A. S. Mashhour, M. H. Ghanim, A. N. El-Wakeil and N. N. Morsi, "On product Fuzzy topological spaces", Fuzzy sets and Systems, 30, 175-191, 1989.

김 용 찬 (Yong-Chan Kim)

1982년 : 연세대학교 수학과(이학사) 1984년 : 연세대학교 대학원 수학과

(이학석사)

1991년 : 연세대학교 대학원 수학과 (이학박사)

1991년 9월~현재 : 강릉 대학교 자연 과학대학 수학과 부교수

관심분야 : Fuzzy Topology

박 진 원 (Jin-Won Park)

1984년 : 연세대학교 수학과(이학사)

1986년 : 연세대학교 대학원 수학과(이학석사)

1994년 : 연세대학교 대학원 수학과(이학박사)

1997년 9월~현재: 제주대학교 사범대학 수학교육과 조교수

관심분야: Fuzzy Topology, Category theory