A note on Fuzzy Vietories Topology

K. Hur, J. R. Moon and J. H. Ryou

Department of Mathematical Science, Wonkwang University

ABSTRACT

We introduce the concept of a fuzzy Vietories topology and we obtain some properties.

1. Preliminaries

Let I = [0, 1] and $I_0 = (0, 1]$. For a set X. Let I^X be the collection of all the mappings from X into I. Each member of I^X , $A: X \rightarrow I$, is called a *fuzzy set* in X (*cf.*[6])). Let $F_p(X)$ denote the collection of all the *fuzzy points* in a set X[3-5].

Definition 1.1[3] A fuzzy point x_{λ} in a set X is said to be *quasi-coincident q-coincident*, in shorts) with a fuzzy set A in X, denoted by $x_{\lambda} q_A$, if $\lambda > A^c(x)$ or $\lambda + A(x) > 1$. A fuzzy set A is said to be *q-coincident* with a fuzzy set B, denoted by AqB, if there exists an $x \in X$ such that $A(x) > B^c(x)$ or A(x) + B(x) > 1. In this case, we say that A and B are *q-coincident*.

Result 1.A[3] $A \subseteq B$ if and only if A and B^c are not q-coincident(denoted by AqB^c). In particular, $x_\lambda \subseteq A$ if and only if $x\lambda qA^c$.

Result 1.B[4] Let A, $B \subseteq I^X$. The followings are equivalent:

- (a) $A \subseteq B$.
- (b) $x_{\lambda} \subseteq B$ for all $x_{\lambda} \subseteq A$.
- (c) $x_{\lambda} \in B$ for all $x_{\lambda} \in A$.

Definition 1.2[1] A subfamily \mathcal{T} of I^X is called a *fuzzy topology* on X if \mathcal{T} satisfies the following conditions:

- (i) \emptyset , $X \in \mathcal{I}$
- (ii) If $\{U_{\alpha}: \alpha \in \Lambda\} \subset T$ then $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in T$, where Λ is an index set,
 - (iii) If A. $B \in \mathcal{T}$ then $A \cap B \in \mathcal{T}$.

Each member of T is called a *fuzzy open set* in X and its complement a *fuzzy closed set* in X. The pair (X, T) is called a *fuzzy topological space*(fts, in short)

Definition 1.3[3] For a fuzzy set A in a fts (X, \mathcal{T}) , the *closure* A and the *interior*, A of A are defined respectively, as

 $\overline{A} = \bigcap \{B : A \subseteq B, B^c \in \mathcal{T}\}\$ and $A = \bigcup \{B : B \subseteq A, B \in \mathcal{T}\}.$

Result 1.C[3] Let (X, \mathcal{T}) be a fts and let $A \subseteq I^X$. Then:

- (a) $x_{\lambda} \in A$ if and only if x_{λ} has a neighborhood contained in A.
- (b) $x_{\lambda} \subseteq A$ if and only if for each q-neighborhood V of x_{λ} , VqA.

Result 1.D[3] Let (X, \mathcal{T}) be a fts and let $A \subseteq I^X$. Then:

 $\mathring{A} = (\overline{A^c})^c$ and $\overline{A} = (\mathring{A}^c)^c$.

Definition 1.4[2] A fts (X, \mathcal{T}) is said to be:

(a) \mathcal{T}_0 if for any two distinct fuzzy points x_λ and y_μ : (Case 1) When $x \neq y$ either x_λ has an open nbd which is not q-conincident with y_μ or y_μ has an open nbd which is not q-coincident with x_λ .

(Case 2) When x = y and $\lambda < \mu(\text{say})$, then there exists a q-nbd V of y_{μ} which is not q-coincident with x_{λ} .

- (b) T_1 , if for any two distinct fuzzy points x_{λ} and y_{μ} :
- (Case 1) When $x \neq y$, x_{λ} has an open nbd which is not q-coincident with y_{μ} and y_{μ} has an open nbd which is not q-coincident with x_{λ} .

(Case 2) When x = y, and $\lambda < \mu(\text{say})$, then there exists a q-nbd V of y_{μ} such that $x_{\lambda}qV$.

Result 1.E[2] A fts (X, \mathcal{T}) is \mathcal{T}_1 if and only if every singlton set is closed in X.

2. Definition of a fuzzy Vietories topology and fundamental properties

Notation. Let (X, \mathcal{T}) be a fts. Then:

- (a) $I_0^X = \{E : E \text{ is nonempty and closed in } X\}.$
- (b) $I_0^A = \{E \in I_0^X : E \subseteq A\}$, where $A \in I^X$.

From Notation, Result 1.B and Result 1.D, we obtain the following result:

Proposition 2.1 Let (X, \mathcal{T}) be a fuzzy \mathcal{T}_1 -space. Then:

(a) $I_0^{A_0 \cap A_1} = I_0^{A_0} \cap I_0^{A_1}$ and generally $I_0^{\cap \alpha A \alpha} = \bigcap_{\alpha} I_0^{A \alpha}$, where $A_0, A_1, A_{\alpha} \in I^X$.

(b) $A \subseteq B$ if and only if $I_0^A \subseteq I_0^B$ and hence A=B if and only if $I_0^A = I_0^B$, where $A, B \subseteq I^X$.

Proof. (a) $E \in I_0^{A_0 \cap A_1} \Leftrightarrow E \in I_0^X$ such that $E \subseteq A_0$ $\cap A_1$.

 $\Leftrightarrow E \subseteq I_0^X$ such that $E(x) \le (A_0 \cap A_1)(x) = \min [A_0(x),$ $A_1(x)$, $\forall x \in X$.

 $\Leftrightarrow E \in I_0^X$ such that $E(x) \leq A_0(x)$ and $E(x) \leq A_1(x)$, $\forall x \in X$.

 $\Leftrightarrow E \in I_0^X$ such that $E \subseteq A_0$ and $E \subseteq A_1$.

 $\Leftrightarrow E \in I_0^{A_0} \cap I_0^{A_1}$.

Now let $(A_{\alpha})_{\alpha \in \Lambda}$ be a subfamily of I^{X} . Then: $E \in I_0^{\cap_{\alpha \in A} A_{\alpha}} \Leftrightarrow E \in I_0^X$ such that $E \subset \bigcap_{\alpha \in A} A_{\alpha}$.

 $\Leftrightarrow E \in I_0^X$ such that $E(x) \le (\bigcap_{\alpha \in A} A_\alpha)(x) = \inf_{\alpha \in A} A_\alpha$ $A_{\alpha}(x), \forall x \in X.$

 $\Leftrightarrow E \in I_0^X$ such that $E \le A_\alpha(x)$, $\forall x \in X$, $\alpha \in \Lambda$. $\Leftrightarrow E \in I_0^X$ such that $E \subseteq A_\alpha$ for each $\alpha \in \Lambda$.

 $\Leftrightarrow E \in I_0^{A_\alpha}$ for each $\alpha \in \Lambda$.

 $\Leftrightarrow E \in \bigcap_{\alpha \in \Lambda} I_0^{A_\alpha}$.

(b)(⇒): The necessary condition is obvious from Notation.

 (\Leftarrow) : Suppose $I_0^A \subseteq I_0^B$. Let $x_\lambda \in A$. Since X is \mathcal{T}_1 , by Result 1.E, $\{x_{\lambda}\} \subseteq I_0^X$ and $\{x_{\lambda}\} \subseteq A$. Thus $\{x_{\lambda}\} \subseteq I_0^A$. By the hypothesis, $\{x_{\lambda}\} \subseteq I_0^B$ and thus $\{x_{\lambda}\} \subseteq B$. So x_{λ} $\subseteq B$. Hence, by Result 1.B, $A \subseteq B$.

From Notation and Result 1.A, the following result is obvious:

Proposition 2.2 Let (X, \mathcal{T}) be a fts and let $A \subseteq I^X$. Then

$$I_0^X - I_0^{A^c} = \{ E \subseteq I_0^X : EqA \}.$$

Lemma 2.3 Let (X, T) be a fts and let \Im be a collection of all sets I_0^G and of all sets $I_0^X - I_0^{G^c}$, where $G \in \mathcal{T}$ Let \mathfrak{P}_{e} be the collection of all finite intersections of members of \Im . Then for each $\mathbf{B} \in \mathfrak{P}_{e}$,

$$\mathbf{B} = \{ E \subseteq I_0^X : E \subseteq A_0 \text{ and } EqA_i \text{ for each } i = 1, \dots, n \},$$

where $A_i \in \mathcal{T}$ for each $i = 0, 1, \dots, n$. In this case, **B** will be denoted as $\langle A_0, A_1, \dots, A_n \rangle_e$.

Proof. Let $B \subseteq \mathbb{R}_e$. Then there exist fuzzy open sets A_0, A_1, \dots, A_n in X such that $\mathbf{B} = I_0^{A_0} \cap (I_0^X - I_0^{A_1^*})$ $\cap \cdots \cap (I_0^X - I_0^{A_n^c})$. By Proposition 2.2, $\mathbf{B} = \{E \in I_0^X: E \in I_0^X: E \in I_0^X : E \in I_0$ $\subseteq A_0$ } $\cap \{E \in I_0^X : EqA_1\} \cap \cdots \cap \{E \in I_0^X : EqA_n\}$. Hence $\mathbf{B} = \{ E \subseteq I_0^X : E \subseteq A_0 \text{ and } EqA_i \text{ for each } i = 1, \dots, n \}.$

From Lemma 2.3, we can easily obtain the following result:

Theorem 2.4 Let (X, \mathcal{T}) be a fts and let \mathfrak{I} be a

collection of all sets I_0^G and of all set $I_0^X - I_0^{G^c}$, where $G \subseteq \mathcal{T}$. Then there is a unique fuzzy topology \mathcal{I} (called the fuzzy exponential topology) on I_0^X such that \Im is a subbase for \mathcal{T}_e . In fact, \mathfrak{P}_e is a base for \mathcal{T}_e .

Definition 2.5 Let (X, \mathcal{T}) be a fts, Then the fuzzy *Vietories*(or *finite*)topology \mathcal{T}_{v} on I_{0}^{X} is the generated by the collection of the forms $\langle U_1, \dots, U_n \rangle_{\nu}$ with U_1 , ..., U_n fuzzy open sets in X, where $\langle U_1, \dots, U_n \rangle_v = \{E \in I_0^X : E \subset \bigcup_{i=1}^n U_i \text{ and } EqU_i \text{ for each } i=1,\dots,n\}$. The pair (I_0^X, \mathcal{T}_v) is called a fuzzy hyperspace with fuzzy Vietories topology(fuzzy hyperspace, in short).

Theorem 2.6 The collection $k \mathcal{B}_{\nu}$ of the forms < $U_1, \dots, U_n >_v \text{ with } < U_1, \dots, U_n \text{ fuzzy open sets in } X,$ forms a base for \mathcal{T}_{ν}

Proof. Since $I_0^X = \langle X \rangle$ and $\langle X \rangle \subseteq \mathcal{P}_v$, $I_0^X = \bigcup \mathcal{P}_v$. Let $\mathcal{U} = \langle U_1, \cdots, U_n \rangle_v$, $\mathcal{V} = \langle V_1, \cdots, V_m \rangle_v$, $U = \bigcup_{i=1}^n U_i$ and $V = \bigcup_{j=1}^{m} U_j$, then clearly, $U, V \in \mathcal{T}$ Consider $< U_1$ $\cap V, \dots, U_n \dots V, V_1 \cap U, \dots, V_m \cap U >_v$. Let $E \subseteq \langle U_1 \cap V, V_m \cap U \rangle_v$. \cdots , $U_n \cap V$, $V_1 \cap U$, \cdots , $V_m \cap U$ >_v. Then $E \subseteq \bigcup_{i=1}^n (U_i \cap U_i)$ $[V] \cup [\bigcup_{i=1}^n (V_i \cap U)], Eq(U_i \cap V)$ for each $i=1,\dots,n$ and $Eq(V_m \cap U)$ for each $j=1,\dots, m$. Thus $E \subseteq U \cap V$, i.e, $E \subseteq U$ and $E \subseteq V$, $E \subseteq U_i$, $E \subseteq V_i$ for each $i = 1, \dots$, n, and $j=1,\dots,m$. So $E \subseteq \mathcal{U} \cap \mathcal{V}$. This completes the proof.

Theorem 2.7 \mathcal{B}_{e} and \mathcal{B}_{v} are equivalent. Hence $T_{\nu} = T_{\nu}$.

Proof. Let $\langle G_0, G_1, \dots, G_n \rangle_e \in \mathcal{B}_e$ and let $E \in \langle G_0, G_1, \dots, G_n \rangle_e \in \mathcal{B}_e$ $G_1, \dots, G_n >_{e}$. Then $E \subseteq G_0$ and EqG_i for each $i = 1, \dots, n$. Let $A_i = G_0 \cup G_i$ for each $i = 1, \dots, n$. Then clearly A_i is open in X for each $i = 1, \dots, n$ and thus $E \subseteq \langle A_1, \dots, A_n \rangle_v$.

Now let $F \in \langle A_1, \dots, A_n \rangle_v$. Then $F \subset \bigcup_{i=1}^n A_i$ and FqA_i for each $i=1,\dots, n$. Let $G_0=\bigcup_{i=1}^n A_i$ and let $G_i = G_0 \cap A_i$ for each $i = 1, \dots, n$. Then G_i is open in Xfor each $i=1,\dots, n$ and $F \subseteq \langle G_0, G_1,\dots, G_n \rangle_e$. By similar argument, for each $\langle A_0, \dots, A_n \rangle_v \in \mathcal{B}_v$ and each $E \subseteq \langle A_1, \dots, A_n \rangle_v$, there exists $a < G_0, \dots, G_n \rangle_e \subseteq \mathcal{P}_e$ such that $E \subseteq \langle G_0, G_1, \dots, G_n \rangle_e \subseteq \langle A_1, \dots, A_n \rangle_v$. Hence \mathcal{P}_e and B are equivalent.

3. Further results

Lemma 3.1 Let (X, \mathcal{T}) be a fuzzy \mathcal{T}_1 -space and let $A \subseteq I^X$. Then:

(a) $I_0^A \subseteq I_0^A$. But if A(x) < 1/2 for each $x \in X$, then $\overrightarrow{I_0^A} \subset I_0^{\overline{A}}.$ (b) $\widehat{I_0^A} = I_0^{\stackrel{\circ}{A}}.$

(b)
$$\widehat{I_0^A} = I_0^{\mathring{A}}$$

Proof. (a) By Proposition 2.1(b), $I_0^A \subseteq I_0^A$. But I_0^X -

 $I_0^A = I_0^X - I_0^{(A^c)^c} = \{E \in I_0^X : Eq(A^c)\}$ by Result 1.D and Proposition 2.2. Thus by Lemma 2.3 and Theorem 2.7, $I_0^X - I_0^A$ is open in (I_0^X, \mathcal{T}_v) . So I_0^A is closed in (I_0^X, \mathcal{T}_v) , and thus $I_0^A \subset I_0^A$. Now let $E \subseteq I_0^A$, i.e, $E \subseteq A$. Let $\langle G_1, G_2 \rangle = 0$ \cdots , $G_n >_v$ be any base member for \mathcal{T}_v containing E. Then $E \subset \bigcup_{i=1}^n G_i$ and EqG_i for each $i=1,\dots,n$. Thus there is an $x_i \in X$ such that $E(x_i) + G_i(x_i) > 1$. Let $E(x_i) = v$ for each $i = 1, \dots, n$. Then $v_i + G_i(x_i) > 1$ and thus $x_{i,\mu}qG_i$ for each $i = 1, \dots, n$. Since $x_{i, \mu_i} \in A$, AqG_i , by Result 1.C(b). Thus there is $y_i \in X$ such that $A(y_i) + G_i(y_i) > 1$ for each $i=1,\dots, n$. Let $A(y_i)=\lambda_i$ for each $i=1,\dots, n$ and let $F=\{y_1, \lambda_1, \dots, y_n, \lambda_n\}$. Then $F \in I_0^X$, $F \subseteq A$ and FqG_i for each $i = 1, \dots, n$. On the other hand, since A(x) < 1/2 for each $x \in X$, $A(y_i) = \lambda_i < 1/2$ for each $i = 1, \dots, n$. Thus G_i $(y_i)>1/2>\lambda_i$ for each $i=1,\dots,n$. So $F\subset\bigcup_{i=1}^n G_i$, and thus $F \in I_0^A \cap \langle G_1, \dots, G_n \rangle_v \neq \emptyset$. Hence $E \in I_0^A$. i.e, $I_0^A \in I_0^A$. Therefore $I_0^A = I_0^A$.

(b) By Lemma 2.3 and Theorem 2.7, I_0^A is open in $(I_0^X T_v)$. By Proposition

2.1(b), $I_0^{\vec{A}} \subset I_0^{\vec{A}}$. So $I_0^{\vec{A}} \subset \widehat{I_0^{\vec{A}}}$. Now let $E \notin I_0^{\vec{A}}$. Then by Result 1.D, $E \land (A^c)^c$. Thus by Result 1.A, $Eq\overline{A^c}$. So there is a $y \in X$ such that $E(y)+(\overline{A^c})(y) > 1$. Let $(\overline{A^c})(y)=\mu$. Then $y_\mu \in (A^c)$ and $y_\mu qE$. Let $< G_0, \cdots$, $G_n>_e$ be a base member for \mathcal{T}_c containing E. Then $E \subset G_0$ and EqG_i for each $i=1,\cdots,n$. Thus $y_\mu qG_0$. Since $y_\nu \in (A^c)$, by Result 1.C(b), A^cqG_0 . So there is an $x \in X$ such that $A^c(x)+G_0(x)>1$. Let $G_0(x)=\lambda$. Then clearly $x_\lambda \in G_0$ and $x_\lambda qA^c$. Let $F=E \cup \{x_\lambda\}$. Then $F \in I_0^X$ and FqA^c and thus $F \in I_0^X - I_0^A$. Moreover $F \subset G_0$ and FqG_i for each $=1,\cdots,n$. Thus $F \in < G_0,\cdots,G_n>_e$, So $F \in < G_0,\cdots,G_n>_e \cap (I_0^X-I_0^A)\neq \emptyset$, and thus

$$E\in \overrightarrow{I_0^X-I_0^A}$$
 . Hence, $E\notin \widehat{I_0^A}$ i.e., $\widehat{I_0^A}$ $\subset I^A$. Therefore $\widehat{I_0^A}=I^A$

From Lemma 2.3, Theorem 2.7 and Lemma 3.1, we obtain the following result:

Lemma 3.2 Let (X, \mathcal{T}) be a fuzzy \mathcal{T}_1 -space, and let $A \in I^X$.

- (a) I_0^A and $I_0^X I_0^{A^c}$ are open in I_0^X if and only if A is open in X.
- (b) If A is closed in X, then I_0^A and $I_0^X I_0^{A'}$ are closed in I_0^X .
- (b') If I_0^A and $I_0^X I_0^{A'}$ are closed in I_0^X and A(x) < 1/2 for each $x \in X$, then A is closed in X.

Theorem 3.3 Let (X, \mathcal{T}) be a fuzzy \mathcal{T}_3 -space and let $A \subseteq I^X$. Then the set $\{E \subseteq I_0^X : A \subseteq E\}$ is closed in (I_0^X, \mathcal{T}_i) .

Proof. Let $\mathcal{A} = \{E \in I_0^X : A \subseteq E\}$. Then:

$$\mathcal{A}^{c} = \{ E \in I_0^X : A \subset E \}$$

$$= \bigcup_{x_{\lambda} \in A} \{ E \in I_0^X : E \subset \{x_{\lambda}\}^c \}$$

$$= \bigcup_{x_{\lambda} \in A} I_0^{\{x_{\lambda}\}^c}.$$

Since X is \mathcal{T}_1 , by Result 1.E, $\{x_{\lambda}\}$ is closed in (X, \mathcal{T}) for each $x_{\lambda} \in F_p(X)$. Thus $\{x_{\lambda}\}^c$ is open in (X, \mathcal{T}) . So by Lemma 3.2(a), $I_0^{\{x_{\lambda}\}^c}$ is open in (I_0^X, \mathcal{T}_v) and thus \mathcal{A}^c is open in (I_0^X, \mathcal{T}_v) . Hence \mathcal{A} is closed in (I_0^X, \mathcal{T}_v)

Theorem 3.4 Let (X, T) be a fts. Then:

- (a) (I_0^X, \mathcal{T}_v) is always \mathcal{T}_0 .
- (b) If X is \mathcal{T}_1 , then $I_0^{\bar{X}}$ is \mathcal{T}_1 . But the converse is false.

Proof. (a) Let $A, B \in I_0^X$ such that $A \neq B$. Let $x_\lambda \in A$, $x_\lambda \notin B$ and $U = \underline{B}^c$. Then U is open in X, AqU, AqX, $A \subset U \cup X$ and BqU. Thus $A \in \langle U, X \rangle_v$ and $B \in \langle U, X \rangle_v$. Hence (I_0^X, \mathcal{T}_v) is \mathcal{T}_0 .

(b) Let $\mathcal{K} \subseteq I_0^X$. Then:

$$\begin{aligned} \{ \mathcal{K} \} &= \{ E \in I_0^X : E = \mathcal{K} \} \\ &= \{ E \in I_0^X : E \subset \mathcal{K} \} \cap \{ E \in I_0^X : \mathcal{K} \subset E \}. \end{aligned}$$

Thus, by Lemma 3.2 and Theorem 3.3, $\{\mathcal{K}\}$ is closed in I_0^X . Hence I_0^X is \mathcal{T}_1 .

Example 3.5 Let X be a finite set containing more than two points. Let the topology \mathcal{T} on X be the fuzzy trivial topology. Then $I_0^X = \{X\}$. So I_0^X is \mathcal{T}_1 . But (X, \mathcal{T}) is not \mathcal{T}_1 .

Definition 3.6 A fuzzy set A in a fts X is said to be *dense* in X if A=X. In particular, A is said to be *countably dense* in X if A is dense in X and S(A) is countable. If X has a fuzzy countable dense set, we say that X is *fuzzy separable*.

Theorem 3.7 Let $\mathcal{J}(X)$ be the family of all the fuzzy finite sets in a fuzzy \mathcal{T}_1 -space X. Then $\mathcal{J}(X)$ is dense in (I_0^X, \mathcal{T}_Y) .

Proof. Let $E \in I_0^X$ and let $\langle G_1, \dots, G_n \rangle_v$ be any base member for \mathcal{T}_v such that $E \in \langle G_1, \dots, G_n \rangle_v$. Then $E \cup_{i=1}^n G_i$ and EqG_i for each $i=1,\dots,n$. Let x_i , $\lambda_i \in E$ and $\lambda_i + G_i(x_i) > 1$ for each $i=1,\dots,n$. Let $F = \{x_{1,\lambda_1}, \dots, x_{n,\lambda_n}\}$. Then clearly $F \in \underline{\mathcal{T}}(X) \cap \langle G_1, \dots, G_n \rangle_v \neq \emptyset$ and thus $E \in \underline{\mathcal{T}}(X)$, i.e., $I_0^X \subset \overline{\mathcal{T}}(X)$. So $\underline{\mathcal{T}}(X) = I_0^X$. Hence $\underline{\mathcal{T}}(X)$ is dense in I_0^X .

Theorem 3.8 *X* is fuzzy separable if and only if I_0^X is fuzzy separable.

Proof. (\Longrightarrow): Suppose *X* is fuzzy separable. Let D be a fuzzy countable dense set in *X* and let \mathcal{D} be the

collection of finite subsets of D. Then clearly, \mathcal{D} is countable. Let $\langle G_1, \cdots, G_n \rangle_v$ be a base member for \mathcal{T}_v . Since D is dense in X, by Result 1.C(b), DqG_i for each $i=1,\cdots,n$. Let $x_{i,\lambda i} \in D$ and $\lambda_i + G_i(x_i) > 1$ for each $i=1,\cdots,n$. Let $E = \{x_{1,\lambda 1},\cdots,x_{n,\lambda n}\}$. Then clearly, $E \in \mathcal{D} \cap \langle G_1,\cdots,G_n \rangle_v$. Thus \mathcal{D} is countable dense in I_0^X . Hence I_0^X is fuzzy separable.

(⇐): Suppose I_0^X is fuzzy separable. Let $\mathcal{D} = \{A_n : n \in \mathbb{Z}^+\}$ be a countable dense subset of I_0^X . For each $A_n \in \mathcal{D}$, choose a fuzzy point $a_{n,\lambda n} \in A_n$ and let $D = a_{n,\lambda n} : n \in \mathbb{Z}^+\}$. Now let U be a fuzzy open set in X. Then $< U>_{\sim}$ open in I_0^X . Thus there is and $A_n \in \mathcal{D} \times U>_{\sim}$. So $A_n \subseteq U$ and $A_n QU$. And thus $a_{n,\lambda n} QU$ and $U \in \mathcal{D}$. So D = X. Hence X is fuzzy separable

References

- [1] C. L. Chang Fuzzy topological spaces, *J. Math. Anal. Appl.* Vol. 24, pp. 182-190, 1968.
- [2] S. Ganduly and Saha, On separation axiom and T_r fuzzy continuity, Fuzzy sets and systems, Vol. 16, pp. 265-275, 1989.
- [3] Pu pao-Ming and Liu Ying Ming, Fuzzy topology 1. Neighborhood structure of a fuzzy point and Moore-Smith convergence, *J. Math. Anal. Appl.* Vol. 76, pp. 571-599, 1980.
- [4] C. De Mitri and E. Pascali, Characterization of fuzzy topologies from neighborhoods of fuzzy points, *J. Math. Anal. Appl.* Vol. 93, pp. 1-14, 1983.
- [5] C. K. Wang, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. Vol. 46, pp. 316-328, 1974.
- [6] L. A. Zadeh, Fuzzy sets, Inform and control, Vol. 8, pp. 338-353, 1965.

K. Hur 제 8 권 제 6 호 참조

J. R. Moon 제 8 권 제 6 호 참조

J. H. Ryou 제 8 권 제 6 호 참조